Intravenous iron loading inhibits the pulmonary vascular response to hypoxia in humans

Thomas C. Smith, Quentin P. Croft, Keith L. Dorrington and Peter A. Robbins

Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, United Kingdom

ABSTRACT

Aim: To manipulate the hypoxia-inducible factor (HIF) transcription factors pharmacologically and thereby confirm that HIF regulates human pulmonary vascular responses to hypoxia.

Background: HIF controls intracellular responses to hypoxia, and our recent work strongly implicates HIF in regulating human heart/lung physiology (Smith et al. PLoS Med 2006; 3: e290[Medline]). Iron is an obligate co-factor in the degradation pathway through which HIF is primarily regulated, and iron supplementation potentiates HIF degradation in vitro.

Hypothesis: Supraphysiological levels of iron similarly augment HIF degradation in vivo and thus inhibit acclimatisation to hypoxia.

Methods: Six normal subjects were each studied on two days. Day 1 (control) began with an infusion of saline while on Day 2 it was 200 mg iron sucrose. On each day subjects then underwent:

1. a 40-min acute iso-capnic hypoxia protocol (end-tidal PO2 50 mmHg), with pulmonary vascular tone assessed echocardiographically;
2. 8 h of iso-capnic hypoxia in a chamber;
3. repeat of the acute hypoxia protocol.

Results: Iron loading prevented the rise in pulmonary arterial pressure normally present after sustained hypoxia and blunted acclimatisation of the acute hypoxic pulmonary vasoconstrictive response (p < 0.01; Fig 1).

Conclusions: HIF degradation is limited by physiological levels of iron, and HIF appears to control human pulmonary vascular responses to hypoxia.

Funded by the Wellcome Trust. TCS is supported by a Rhodes Scholarship.