suitably equipped laboratory. Future work will focus on immune profile-guided therapeutic trials for immune-dysfunction as well as an exploration of whether the immune defects identified are simply additive or if there is synergism between them.

Funding and acknowledgements: This work was funded by an academic clinical training fellowship from the Chief Scientist Office (CAF/08/13), the Sir Jules Thorn Charitable Trust and NHS Lothian Research and Development.

Figures for this abstract can be accessed at www.ics.ac.uk/
Meetings Seminars/main_meetings/gold_medal_ab

References

Research Gold Medal Presentations

Iron is an important factor in pulmonary physiology

TG Smith. Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, UK

Scientific background
The interaction between hypoxia and pulmonary physiology is central to intensive care medicine. Physiological responses to hypoxia increase an increase in pulmonary arterial pressure caused by hypoxic pulmonary vasoconstriction. This phenomenon is important in intensive care medicine, such as in patients with acute respiratory distress syndrome (ARDS), as well as in other areas of anaesthesia and medicine. However it can become pathological – pulmonary hypertension frequently complicates hypoxic lung disease and worsens patient survival. The mechanisms underlying pulmonary responses to hypoxia are poorly understood. This body of work has investigated these mechanisms and their therapeutic implications. Our original hypothesis was that the hypoxia-inducible factor (HIF) family of transcription factors, which are known to control intracellular responses to hypoxia, also control systemic cardiopulmonary responses to hypoxia to some extent. In each of the human studies, the primary outcome measure was pulmonary artery systemic pressure assessed by Doppler echocardiography.

Study of patients with a rare mutation
Although HIF is best known as the transcriptional activator of erythropoietin, in fact it controls cellular responses to hypoxia throughout the body. In order to examine involvement of HIF in systemic physiology, we studied the cardiopulmonary phenotype associated with Chuvash polycythaemia, an extremely rare autosomal recessive disease in which HIF-mediated gene expression is pathologically activated. Twelve participants were exposed to 10-minute periods of hypoxia on a mouthpiece system, using the technique of dynamic end-tidal forcing to control end-tidal partial pressures of oxygen (PETO2) and carbon dioxide. Mild hypoxia (PETO2 70 mm Hg [9.3 kPa]) and moderate hypoxia (PETO2 50 mm Hg [6.7 kPa]) were tested. Patients with Chuvash polycythaemia were found to have pulmonary hypertension, and displayed abnormally vigorous pulmonary hypertensive, ventilatory and heart rate responses to hypoxia. Remarkably, the increase in pulmonary arterial pressure caused by hypoxia was 3-10 times greater in patients than control participants (p<0.01). This was the first study to elucidate a specific genetic determinant of human cardiopulmonary hypoxia physiology.

Study of mice with an engineered mutation
In a related animal study we used whole body plethysmography to measure the ventilatory response to acute hypoxia (12% oxygen) in various genetically engineered knockout mice. Compared with littermate controls, the ventilatory response was ~60% greater in mice deficient for prolyl hydroxylase domain-2, an enzyme that regulates HIF activity (p<0.01).
Laboratory study of iron and pulmonary physiology

Together these human and animal studies implicated HIF in regulating cardiopulmonary responses to hypoxia. Our next study sought to manipulate these responses by manipulating HIF pharmacologically, exploiting the observation that intracellular HIF activity varies with iron availability. Eight healthy volunteers took part in a placebo-controlled crossover study. Each volunteer undertook two experimental days; one beginning with an intravenous infusion of saline placebo and one beginning with an intravenous infusion of iron sucrose 200 mg. Following the infusions, volunteers were exposed to acute hypoxia (as above) and to eight hours of sustained hypoxia in our laboratory’s purpose-built hypoxia chamber (PETO, 55 mm Hg [7.3 kPa]). The normal increase in pulmonary arterial pressure caused by sustained hypoxia (a 23% increase in this study) was prevented by prior infusion of iron (p<0.001).*

Field study of iron and pulmonary physiology using altitude hypoxia

Before this research programme, iron had not been considered as a factor in the aetiology or clinical management of any form of pulmonary hypertension. To explore whether this novel effect of iron might be clinically important, we conducted a major field study in the remote Andes of Peru. Two randomised, double-blinded, placebo-controlled protocols were conducted in Cerro de Pasco (altitude 4,300 m) where barometric pressure is ~450 mm Hg (equivalent to breathing ~12% oxygen at sea level). In the first protocol, 22 healthy sea-level residents were studied over one week of hypoxia, and received intravenous iron sucrose (200 mg) or saline placebo on the third day. Infusion of iron reversed ~47% of the pulmonary hypertensive response to hypoxia (p<0.02; see Figure 1). In the second protocol, 11 high-altitude residents diagnosed with chronic mountain sickness (haemoglobin >21 g/l) were studied over one month of hypoxia. Patients underwent staged isovolaemic venesection of two litres of blood, and two weeks later received intravenous iron sucrose (400 mg) or placebo, which were subsequently crossed over. Progressive iron deficiency induced by venesection was associated with a ~29% increase in pulmonary artery systolic pressure (p<0.03; see Figure 2). This study demonstrated that hypoxic pulmonary hypertension is profoundly influenced by iron availability in a manner that is consistent with the biochemistry of HIF. These findings were recently published in the Journal of the American Medical Association.

Conclusions and ongoing work

This research programme has provided evidence that HIF, which coordinates the cellular response to hypoxia, also plays a major role in regulating the actual organ systems upon which cellular oxygen delivery ultimately depends. It has further established that hypoxic pulmonary hypertension is attenuated by iron supplementation and exacerbated by iron depletion. These findings have immediate clinical implications for the patients studied and, more generally, suggest there may be a place for careful adjustment of iron balance in the broader management of hypoxic lung disease. It is unusual for an agent as familiar, safe and inexpensive as iron to offer promise for a novel indication, and even a small beneficial effect in critically ill patients such as those with ARDS or end-stage pulmonary hypertension would be significant. A recent editorial commented that our work ‘has vast clinical implications for the sickest patients seen in the hospital’ and asked the question ‘Should hypoxic patients in the intensive care unit receive supplemental iron?’ At the least, until further evidence is forthcoming it may be prudent to avoid iron deficiency in critically ill patients with pulmonary hypertension. It is interesting that although the reported prevalence of true iron deficiency in intensive care is ~10%, practice is rarely treated or even measured. We are preparing to extend our work with studies in intensive care and studies of ascorbate (vitamin C), which has the same intracellular effect on HIF as iron and may present a better therapeutic alternative.

Funding

This body of work has been funded by the Wellcome Trust and the Dunhill Medical Trust. The author reports no conflict of interest.

References