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Abstract

The hypoxia-inducible factor (HIF) family of transcription factors is responsible for coordinating the cellular
response to low oxygen levels in animals. By regulating the expression of a large array of target genes during
hypoxia, these proteins also direct adaptive changes in the hematopoietic, cardiovascular, and respiratory
systems. They also play roles in pathological processes, including tumorogenesis. In recent years, several oxy-
genases have been identified as key molecular oxygen sensors within the HIF system. The HIF hydroxylases
regulate the stability and transcriptional activity of the HIF-a subunit by catalyzing hydroxylation of specific
proline and asparaginyl residues, respectively. They require oxygen and 2-oxoglutarate (2OG) as co-substrates,
and depend upon non-heme ferrous iron (Fe(II)) as a cofactor. This article summarizes current understanding of
the biochemistry of the HIF hydroxylases, identifies targets for their pharmacological manipulation, and dis-
cusses their potential in the therapeutic manipulation of the HIF system. Antioxid. Redox Signal. 12, 481–501.

Introduction

Complex multicellular organisms appear to have
evolved soon after significant increases in environmental

oxygen levels *2,300 million years ago (72). Examination of
the fossil record suggests that the approximate doubling of
ambient oxygen levels over the past *200 million years may
have been a factor in the evolution of large placental mam-
mals (55). With increased size and biological complexity
comes a fundamental requirement for efficient oxygen homeo-
stasis. In recent years the hypoxia-inducible factor (HIF)
family of transcription factors has emerged as a central reg-
ulator across all aspects of metazoan oxygen transport and
utilization (178, 204). When oxygen is limiting, the HIF tran-
scription factors are responsible for controlling the cellular
expression of hundreds of target genes, at least in human cells,
which in turn direct adaptive changes in the hematopoietic,
cardiovascular, and respiratory systems (177, 186). This role
confers upon the HIF pathway an importance not only in
physiological regulation, but also in pathophysiological set-
tings such as ischemic vascular disease, respiratory disease,
and cancer.

Substantial progress has been made in our understanding
of the molecular mechanisms by which the levels and activity

of HIF are regulated by oxygen. In particular, the modulation
of hydroxylase enzymes that act as oxygen sensors for the HIF
system holds significant therapeutic promise (75, 157, 175).
This article summarizes the current understanding of the
biochemistry of the HIF hydroxylases, identifies targets for
their pharmacological manipulation, and discusses recent
progress and potential in the field.

The Prolyl Hydroxylase—Hypoxia-Inducible Factor Axis

The non-heme Fe(II)-dependent oxygenases and structur-
ally related oxidases are a ubiquitous superfamily of enzymes
that catalyze a wide range of oxidation reactions. The largest
subfamily of these oxygenases uses the citric acid cycle in-
termediate 2-oxoglutarate (2OG, or a-ketoglutarate) as a co-
substrate, and share conserved double-stranded b-helix core
(DSBH) fold and Fe(II) binding motifs (35, 39, 171). In plants
and microorganisms, the 2OG-dependent oxygenases cata-
lyze an extremely diverse range of oxidative reactions (58). In
animals, their known activity is currently limited to hydroxy-
lation (or N-methyl demethylation via hydroxylation), but
sequence analyses in humans suggest the existence of more
than 60 Fe(II)- and 2OG-dependent oxygenases, many of
which have no assigned physiological function (117). In this
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review, we will focus on the four enzymes identified as direct
regulators of the HIF transcriptional pathway (170).

Hypoxia-inducible factor

HIF was first identified as a hypoxia-induced nuclear factor
that binds to response element enhancer regions associated
with the erythropoietin (EPO) gene (178). HIF was subse-
quently shown to be an a=b-heterodimeric protein, both
subunits of which belong to the basic helix-loop-helix PAS
protein family. The a-subunit exists in humans as three iso-
forms, HIF-1a, HIF-2a, and HIF-3a (with splice variants). Of
these, HIF-1a is the most extensively studied. In contrast
to HIF-1a, which is ubiquitously expressed, HIF-2a has re-
stricted tissue expression, but both HIF-1a and HIF-2a are
positive regulators of hypoxia-inducible gene expression
(176). HIF-3a seems to suppress hypoxia-inducible gene ex-
pression in the human kidney, and may therefore act as a
negative regulator (71, 120).

Both subunits of HIF are constitutively expressed. Under
most circumstances, the HIF-b subunit is present in excess
relative to the HIF-a subunit, the abundance of which is reg-
ulated directly by oxygen availability (202). Under most
normoxic conditions, HIF-1a is rapidly degraded. The key
oxygen-dependent step in this degradation pathway was
identified in 2001 as the C-4 hydroxylation of specific proline
residues (Pro402 and Pro564, in the case of human HIF-1a)
within the N- and C-terminal oxygen-dependent degradation
domains of HIF-1a. Hydroxylation at these sites enables
binding of the von Hippel–Lindau tumor suppression protein
[pVHL, (124)] to HIF-a, which in turn targets HIF-1a for

E3-ligase-mediated ubiquitination and proteasomal degra-
dation (24, 54, 85, 86, 124) (Fig. 1). Prolyl hydroxylation is
inhibited under hypoxic conditions, wherein HIF-1a accu-
mulates and dimerizes with HIF-1b. In association with the
co-activator complex p300=CBP, the HIF-1 dimer binds to the
hypoxia response elements and regulates the expression of
target genes.

Prolyl hydroxylase domain (PHD) enzymes

The enzymes responsible for HIF-1a prolyl hydroxylation,
termed prolyl hydroxylase domain (PHD) or EGLN proteins,
are members of the Fe(II)- and 2OG-dependent oxygenase
superfamily (24, 54, 85, 86, 124). The three human PHD iso-
forms (PHD1, PHD2, and PHD3) share homology in their
C-terminal catalytic domains, but differ in their N-terminal
regions (82) and functionally in terms of their expression,
cellular localization, tissue distribution, and catalytic activi-
ties (e.g., 4, 130) (Table 1). Like the collagen prolyl hydroxy-
lases (CPH), which were the first 2OG-dependent oxygenase
family to be identified (83), the PHDs require oxygen and 2OG
as co-substrates and depend upon Fe(II) and, probably,
ascorbate as co-factors. It is their requirement for oxygen, with
Km values slightly higher than tissue oxygen concentrations
during normoxia, that is proposed to enable the HIF–PHDs to
function as effective cellular oxygen sensors (52, 77, 128)
(Table 2). Nuclear magnetic resonance and labeling studies
have shown that the PHDs catalyze hydroxylation at the
trans-4-position of the proline ring, with retention of stereo-
chemistry (116, 128). Crystallographic studies of PHD2 in
complex with an inhibitor have verified the presence of the

FIG. 1. Schematic representation of HIF-1a regulation under normoxic and hypoxic conditions. Asn803, HIF-1a aspar-
agine residue 803; FIH, factor inhibiting HIF-1a (asparaginyl hydroxylase); p300=CBP, transcriptional coactivator; PHD, prolyl
hydroxylase domain enzyme; Pro402, Pro564, HIF-1a proline residues 402 and 564, respectively; pVHL, von Hippel Lindau
tumor-suppressor protein; Ub, ubiquitin; UL, ubiquitin ligase. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article at www.liebertonline.com=ars).
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predicted DSBH fold, 2OG binding site and iron binding
residues (125) (Fig. 2). Kinetic and mechanistic studies imply
substrate binding with movement of a loop region sur-
rounding the active site (57). Interestingly, PHD2 appears to
have unusually tight binding for Fe(II) and 2OG (127). It also
appears to be the most ubiquitously expressed of the PHDs;
genetic studies have also defined a nonredundant role for
PHD2 in the regulation of HIF-1a during normoxia (17).

There is evidence for selective regulation of PHD isoforms by
particular HIF-a isoforms. PHD2 is specifically induced by HIF-
1a, whereas PHD3 is responsive to both HIF-1a and HIF-2a (5).
This induction of PHD expression may serve as a feedback loop
to limitHIF-mediatedresponsesduringhypoxiaand=orincrease
the rate of HIF degradation following reoxygenation (4, 44).

Recently, a novel Fe(II)- and 2OG-dependent prolyl hy-
droxylase has been suggested as an additional member of the
HIF-PHD family. This enzyme is widely expressed and is
capable of HIF-1a hydroxylation both in vitro and in cultured
cells, and of influencing cellular HIF-a protein levels (103,
145). However, unlike other PHD enzymes it contains a
transmembrane domain and its catalytic region is located
within the endoplasmic reticulum (145). The significance of
this enzyme in the regulation of the HIF pathway remains
unclear (103, 135, 145).

Factor inhibiting HIF (FIH)

In addition to regulation of HIF-a stability via prolyl hy-
droxylation, the transcriptional activities of HIF-1a and HIF-
2a are regulated by hydroxylation of an asparagine residue in
their C-terminal transactivational domains (CADs). Hydro-
xylation at this residue (Asn803 and Asn851 in human HIF-1a
and HIF-2a, respectively) reduces the interaction between HIF
and the cysteine-histidine (CH-1) domain of the p300=CBP co-
activator complex that is necessary for activation of target
genes (110, 119). The asparagine hydroxylase responsible for
catalysing this reaction is Factor Inhibiting HIF (FIH) (24, 74,
109, 119) (Fig. 3).

Like the PHDs, FIH is an Fe(II)- and 2OG-dependent oxy-
genase. Unlike the PHDs, which appear to form a discrete
subfamily of human oxygenases, FIH is a member of an ex-
tended family that includes the ‘JmjC’ histone demethylases
(34). There are significant structural and functional differences
between PHDs and FIH, including differences in their affini-
ties for co-factors and co-substrates. FIH, unlike the PHDs, is
dimeric and does not have strong dependence on ascorbate
for HIF hydroxylation, at least in vitro (Table 2). Furthermore,
as well as acting on HIF-1a, FIH also catalyzes hydroxylation
of conserved aparagine-residues in the ubiquitous ankyrin
repeat domains (36, 37, 95). Understanding differences in the
roles of FIH and the PHDs is likely to be important for the
selective therapeutic manipulation of HIF system.

Insights from genetically engineered animals

Insights into the roles of the PHDs have been gained from
studies of genetically engineered mice. Germ-line disruption
of PHD2 (PHD2-=-) results in embryonic lethality due to severe
placental and cardiac defects, but PHD1-=- and PHD3-=- mice
survive to adulthood (193). Interesting abnormalities have
been demonstrated in both strains. PHD1-=- mice have a re-
markable tolerance to ischemia and a substantially reduced
exercise tolerance (7). These observations may be linked at a
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biochemical level by the upregulation of pyruvate dehydro-
genase kinase isoforms that restrict the normal entry of gly-
colytic intermediates into the citric acid cycle. The resultant
shift towards anaerobic metabolism reduces the capacity for
oxidative muscle performance, but also reduces the degree of
oxidative stress experienced during hypoxia (7). A role for
PHD3 in the regulation of apoptosis during sympathoadrenal
development has also been described. In the PHD3-=- mouse
there was abnormal sympathetic innervation of target organs,
reduced adrenal medullary secretory capacity, and reduced
systemic blood pressure (19, 112). Consistent with previous
reports of isoform specificity in the PHD-HIF axis (4), PHD3
appears to regulate the sympathoadrenal axis in association
with HIF-2a (19).

Despite the lethality of germ-line inactivation of PHD2 (193),
an important role for PHD2 in the cardiovascular system is
suggested by studies of conditional PHD2 inactivation in adult
mice. Takeda et al., for example, observed widespread upre-
gulation of angiogenesis following conditional PHD2 knock-
out in *6 week-old mice, an effect that was associated with
elevated serum levels of vascular endothelial growth factor
(VEGF), but no increase in tissue VEGF mRNA levels (192).
The latter is surprising, given the assumed paracrine nature of
hypoxia-induced angiogenesis and the established role of HIF
in the regulation of VEGF expression. Somatic PHD2 inacti-
vation has also been shown to increase murine erythropoietin
and red cell production (132, 191), and a role in erythropoiesis
is supported by reports of heterozygous PHD2 mutation as a
cause of human familial polycythemia (1, 108, 148, 150).

Inhibition of HIF Hydroxylases

The catalytic mechanism of the 2OG oxygenases can be
divided into two half reactions (Fig. 4): the generation of a
reactive oxidizing species, and its subsequent utilization for
substrate hydroxylation (reviewed in refs. 34, 181). In the
resting state, Fe(II) at the active site is coordinated by three
residues from the enzyme (normally two histidine residues
and one asparatate or glutamate residue) and by two–three
water molecules. The binding of Fe(II) to the HXD=E . . . H
motif of 2OG oxygenases is labile compared to the heme
oxygenases. Indeed, the Fe(II) bound at the PHD2 active site
may be substituted by other transition metal ions (129), pro-
viding a possible explanation for the pathophysiological effect
of cobalt poisoning (see below). Crystallographic and kinetic

analyses suggest that 2OG and substrate bind sequentially to
the active site. Substrate binding is followed by binding of
molecular oxygen, which is proposed to replace the remaining
water molecule from the iron centre. Oxidative decarboxyl-
ation of 2OG leads to the production of carbon dioxide, suc-
cinate, and the highly reactive Fe(IV)¼O intermediate that is
responsible for HIF-a hydroxylation (Fig. 4).

Because this general mechanism is common to most, if not
all, 2OG oxygenases, selectivity is a major challenge in the
development of HIF hydroxylase inhibitors. To date, com-
pounds identified as HIF hydroxylase inhibitors (likely) act
via one or more of the following four mechanisms: (a) re-
duction of iron availability (e.g., by chelation of iron either in
solution and=or at the active site); (b) competition with iron
for enzyme binding; (c) competition with 2OG for enzyme
binding; (d) competition with the HIF-a substrate (Fig. 5).
Here we briefly exemplify compounds from different classes
of HIF hydroxylase inhibitors.

Iron chelators and competitors

Historically, cobalt [Co(II)] poisoning has been associated
with stimulation of erythropoiesis (65). Indeed, Co(II) has
been used in the treatment of anemia (211). The discovery of
the PHD–HIF axis raised the possibility that the hypoxia-
mimetic effects of cobalt and other transition metals were
mediated via this pathway (54). In cell culture, Co(II), nickel
[Ni(II)], and manganese [Mn(II)] are all reported to increase
EPO mRNA (65), probably via HIF-a stabilization. Biochem-
ical studies suggest competition for the metal ion binding site
in the PHDs (46), but direct HIF-a-binding or depletion of
cellular ascorbate are possible alternative or additional
mechanisms (168, 215).

Pioneering studies also demonstrated that iron chelators
[e.g., desferrioxamine (DFO, Fig. 5.1)] induce HIF-a stabiliza-
tion and activate HIF transcriptional activity in cell culture
(203). It is now well established that a variety of iron chelators
inhibit both PHD and FIH (54, 78), very likely by decreasing
the availability of Fe(II) in solution, and, possibly in some
cases, by binding at the enzyme active site. DFO has been used
clinically for many years in the treatment of iron-overload and
aluminium-toxicity (47, 199), and has been used to examine
the PHD–HIF axis in human physiology (11, 158, 183).

Kinetic studies using recombinant PHD proteins must be
interpreted with a degree of caution, given the possibility of

Table 2. Apparent Km Values for Recombinant Human Collagen Prolyl Hydroxylase

and HIF Hydroxylase Enzymes

Co-substrate CPH1 CPH2 CPH3 FIH HIF-PHD1 HIF-PHD2 HIF-PHD3

Oxygen 40 N.A. N.A. 90–237 230 67–250 230
Iron 2 2–4 0.5 0.5 0.03 0.03 0.1
2-Oxoglutarate 20–22 22 20 25–147 2–60 < 1–60 12–55
Ascorbate 300–340 330–340 370 260 170 180 140

Reported apparent Km values (mM) for recombinant human collagen prolyl hydroxylases (CPH1-3, references 77, 107, and 135), HIF prolyl
hydroxylases (HIF-PHD1-3, references 52, 77, 78, 102, and 127) and the HIF asparaginyl hydroxylase (FIH, references 52, 101) for co-
substrates oxygen and 2-oxoglutarate and the co-factors iron (Fe(II)) and ascorbate. The ranges reflect variability in the literature, likely in part
related to methodological differences, and=or the dependence of apparent Km values for HIF hydroxylases on the length of HIF1a=HIF2a
substrate and nature of the oxygen dependent degradation domain (ODDD, N-terminal versus C-terminal). The Km values for oxygen are
slightly higher for all the HIF hydroxylases than typical tissue oxygen concentrations during normoxia, indicating that these enzymes are
well-suited to their role as cellular oxygen sensors.

N.A., value not available in the literature.
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methodological differences between studies and the depen-
dence of catalytic activity on factors including the length of
HIF-a substrate and the nature of the oxygen-dependent
degradation domain (e.g., N-terminal versus C-terminal).
However, such experiments indicate the apparent Km values
for Fe(II) binding to each PHD isoform (PHD1–3) to be
�0.1 mM, in contrast to a higher value (*0.5 mM) for FIH
(Table 2). DFO, Ni(II), Co(II), and Mn(II) all therefore exhibit
greater inhibition of FIH, compared with the PHDs, at least
with isolated proteins (78). Compared with other 2OG oxy-
genases, PHD2 has an unusually high affinity for both Fe(II)
and some other transition metal ions (127, 129). Unexpectedly,
while Fe(II) binds at a single high affinity metal binding site in

the catalytic domain of PHD2, some other transition metal
ions can bind to the PHD2 catalytic domain at a ‘second’ metal
binding site (129).

Analogues of 2OG and related compounds

Crystallographic studies reveal that, in all studied 2OG
oxygenases, the 2OG binds to Fe(II) in the active site via
its 1-carboxylate and 2-oxo groups. The 2OG also binds to
side-chains of conserved arginine=lysine residues in the hy-
droxylase enzymes and to at least one active site alcohol
serine=threonine=tyrosine residue via its 5-carboxylate group
(35). In contrast to the binding of the 2OG to Fe(II), there are
significant variations in the 2OG binding pocket. The re-
quirement for 2OG, coupled to this variation in the 2OG
binding pocket, has led the use of its analogues as HIF hy-
droxylase inhibitors.

FIG. 2. Crystal structure of PHD2. (A) A view derived
from a crystal structure of PHD2 (cyan) in complex with a
bicyclic inhibitor (yellow) showing the octahedral coordina-
tion of Fe(II) (red) by active site His313 (green), Asp315
(green), and His374 (green) (PDB: 2G19). (B) A close-up view
of PHD2 (cyan) active site residues showing the Fe(II) (red),
His313 (green), Asp315 (green) and His374 (green) (PDB:
2G19) (125). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of
this article at www.liebertonline.com=ars).

FIG. 3. Crystal structure of FIH. (A) A view derived from a
crystal structure of FIH (green) in complex with 2OG (yellow)
and a fragment of its substrate CAD (blue) showing the oc-
tahedral coordination of Fe(II) (orange) by active site His199
(cyan), Asp201 (cyan), and His279 (cyan) (PDB: 1H2L). Re-
ference (53). (B) A close-up view derived from a crystal
structure of FIH (green) in complex with the inhibitor N-
oxalyl-D-phenylalanine (yellow) showing the active site resi-
dues Fe(II) (orange), His199 (cyan), Asp201 (cyan), and His279
(cyan) (PDB: 1YCI) (126). (For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article at www.liebertonline.com=ars).
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N-Oxaloylglycine derivatives. N-Oxaloylglycine (NOG,
Fig. 5.2) is a 2OG analogue in which the C-3 methylene group
is substituted for an NH, thus making the 2-carbonyl group
less susceptible to nucleophilic oxygen attack and preventing
activity as a co-substrate. Originally explored as a CPH in-
hibitor (43), NOG is now recognized as an inhibitor of many,
but not necessarily all, 2OG oxygenases, as well as other en-
zymes (75). Dimethyl-oxalylglycine (DMOG) is a diester de-
rivative of NOG that penetrates cells and induces HIF-1a in
cell-based assays (86).

NOG has a broad spectrum of inhibitory activity, but its
derivatives hold promise as more selective inhibitors of FIH.
Ki values of PHD1-3 and FIH for NOG have been reported as
8–50 and 2mM, respectively (101). Based on crystallographic
data indicating that modification of the NOG side-chain may
enhance FIH inhibition, N-oxalyl amino acids were synthe-
sised and screened with recombinant FIH and PHD2 (126).
For PHD2, inhibitory activity was reduced in every case,
compared with NOG. For FIH, D-amino acid derivatives
showed enhanced inhibitory activity. The most potent re-
ported FIH inhibitor, N-oxalyl-D-phenylalanine (NOFD, Fig.
5.3) has also recently been shown to inhibit the histone de-
methylase JMJD2E, a 2OG oxygenase that is structurally more
similar to FIH than PHD2 (162).

Other 2OG analogues. Inhibition of CPH by the natu-
rally occurring cyclic hydroxymate dealanylalahopcin (76)
inspired the synthesis and screening of analogues of this
natural product against the PHDs (169). Although hydro-
xyamic acids can act as iron chelators, dealanylalahopcin

analogues appear to inhibit PHDs mainly as 2OG competi-
tors. This is supported by the greater inhibitory activity of an
analogue (Fig. 5.4) with a side-chain similar in length to that of
2OG (169). Other cyclic 2OG analogues explored as inhibitors
of PHDs and FIH include pyridine-2,4-dicarboxylic acid
(Fig. 5.5), which was reported to be an efficient inhibitor of the
PHDs and FIH, but also to inhibit other 2OG oxygenases in-
cluding CPH and JMJD2E (101, 162). Its isomer, pyridine-2,5-
dicarboxylic acid (Fig. 5.6), had lower activity against PHDs,
FIH, and JMJD2E, but is more potent against CPH (101, 162).
Just as modification of the side-chain of NOG enhanced se-
lectivity against FIH, modifying pyridine-2,4-dicarboxylic
acid or pyridine-2,5-dicarboxylic acid may be starting points
for the development of selective FIH inhibitors.

Potent PHD2 inhibitors. The importance of PHD2 in
human oxygen sensing has focused efforts on the identifica-
tion of highly potent inhibitors of this isoform suitable for
therapeutic application. A combination of crystallographic
analysis and structure-based design has, for example, been
employed to identify inhibitors based on analogues of an
imidazo[1,2-a]pyridine scaffold with a glycine side-chain
[(125, 207), Fig. 5.7] These PHD2 inhibitors induced cellu-
lar VEGF by stabilizing HIF-1a, and similar results have
been demonstrated by the same group using a series of 8-
hydroxyquinolines [(208), Fig. 5.8] or 5-substituted pyridine
derivatives [(206), Fig. 5.9] Structure-based design has also
identified substituted aza-benzimidazoles (Fig. 5.10) as PHD2
inhibitors, and provided insights into the structural require-
ments for tight binding and potent PHD2 inhibition (60).

FIG. 4. Outline catalytic mechanism of the prolyl hydroxylases. The outline catalytic mechanism of the prolyl hydrox-
ylases can be divided into two half reactions: an initial generation of the hydroxylating species and its subsequent utilization
for hydroxylation. At the start of the catalytic cycle, the Fe(II) is coordinated at the active site and then the co-substrate 2OG
and then the substrate can bind sequentially to the active site. This process is followed by binding of oxygen that is proposed
to replace the remaining water molecule from the iron center, leading to decarboxylation of 2OG and the formation of a
highly reactive Fe(IV)¼O intermediate, which is responsible for hydroxylation of the substrate, concomitant with formation
of carbon dioxide and succinate. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article at www.liebertonline.com=ars).
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Hydroxy-thiazoles (Fig. 5.11) are also potent inhibitors of
PHD2, with structure–activity relationships studies demon-
strating particular importance of the carboxylic acid side-
chain and N-hydroxy functionality (196). To date, it has not
been reported whether these inhibitors are selective for PHD2
over PHD1 or PHD3, but clearly this is of interest with respect
to their development as therapeutic agents.

Citric acid cycle intermediates and other inhibitors. Citric
acid cycle intermediates, including pyruvate (Fig. 5.12), have
been investigated as HIF hydroxylase inhibitors (73, 84, 102,
173). Among them, fumarate (Fig. 5.13) and succinate (Fig.
5.14) were identified as in vitro inhibitors of PHD1-3 with Ki

values of 50–80 mM for fumarate and 350–460 mM for succi-
nate. Oxaloacetate (Fig. 5.15) showed modest inhibition of
PHD1–3 (Ki 400–1,000mM) and FIH (Ki 400mM), whereas
citrate (Fig. 5.16) was more selective for FIH (Ki 110 mM). The
concentration of these intermediates may reach sufficiently
high levels to inhibit the HIF hydroxylases in some cells, in
particular in tumors where mutations can lead to elevated
levels of succinate and fumarate (152).

Recently, aspirin metabolites were also identified as po-
tential inhibitors of HIF hydroxylases. Mass spectrometric
binding studies and in vitro inhibition data revealed signifi-
cant PHD and FIH inhibition, and some metabolites induced
HIF-1a accumulation and HIF target gene expression in cell-
based studies (114), though the mechanism by which this

occurs is uncertain. Traces of some of these metabolites were
identified in human urine following oral aspirin administra-
tion, raising the possibility that activation of the HIF pathway
could contribute to the biological actions of aspirin.

Therapeutic Applications of PHD Inhibition

PHD inhibition has emerged as a potential therapeutic
strategy in numerous pathophysiological settings, including
myocardial ischemia, cerebrovascular disease, and anemia.
Progress in these areas has to date been limited mainly to
preclinical models of disease, with little translation into the
clinical domain and a scarcity of published data from human
studies. Nevertheless, we review some of the promising ad-
vances below, and in Table 3 provide an overview of selected
PHD inhibitors that have been used to manipulate the oxygen
sensing system in vivo, or have clear implications in a clinical
setting.

Myocardial ischemia

A link between prolyl hydroxylation and myocardial is-
chemia dates back to 1975, when Judd and Wexler reported
that changes in myocardial collagen deposition and fibrosis
following experimental myocardial infarction (MI) were as-
sociated with increased CPH activity in the rat (90). In 2001,
Nwogu and colleagues administered the oral 2OG oxy-
genase inhibitor FG0041 to adults rats for 4 weeks following

FIG. 5. Some reported inhibitors of the HIF prolyl hydroxylases. Individual inhibitors are numbered in bold and referred
to in the text as Fig. 5.X, where X is the number given to each inhibitor in this figure.
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experimental MI (142). Left ventricular function was signifi-
cantly enhanced, an effect attributed by the authors to re-
duced extracellular matrix collagen deposition, but one which
could now be attributed to inhibition of the HIF hydroxylases
(151) or, possibly, other 2OG-dependent oxygenases.

Ischemic preconditioning (IPC) is a process by which re-
peated short periods of cardiac ischemia and reperfusion
protect against subsequent ischemia (134). There is now con-
siderable evidence for involvement of the HIF system in this
process, particularly in the so-called ‘late phase’, which de-
velops a number of hours after the ischemic insult, lasts for
several days, and classically involves the transcriptional ac-
tivation of HIF target genes including heme-oxygenase-1
(HO-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide
synthase [iNOS, (20)]. The beneficial effects of cardiac pre-
conditioning are lost in HIF-1aþ=- mice (27), or in mice treated
with small interfering RNA (siRNA) against HIF-1a (50). In
contrast, the effects of IPC can be mimicked in normal mice by
administration of cobalt chloride, DMOG or siRNA specifi-
cally targeting PHD2 (50, 212). This effect was not seen after
inhibition of either PHD1 or PHD3, implicating the PHD2-
HIF-1a axis in this process (50). In similar experiments, PHD2
inhibition appeared to induce substantial HO-1 and iNOS
expression both in cell culture and in adult mice, an effect that
was associated with an attenuated acute inflammatory re-
sponse to myocardial ischemia (138, 139, 144).

Although these findings support an important role for the
PHD–HIF pathway in IPC, direct evidence remains difficult to
obtain. The expression of key mediators such as HO-1, COX-1,
and iNOS is under the control of several other signaling
pathways that are activated (or inhibited) by ischemia. The
nuclear factor-kB (NF-kB) transcription factors, for example,
are well-established as important mediators of cardiac IPC
(194, 213). In addition to functional interaction between the
HIF and NF-kB signalling pathways at the level of gene ex-
pression, there appears to be direct molecular interaction and
interdependence (36, 194). This complexity suggests consid-
erable potential for diverse and unexpected effects of in vivo
PHD inhibition.

Despite these mechanistic uncertainties, several indirect
observations enhance the therapeutic potential for PHD-HIF
manipulation in ischemic cardiac disease. First, sustained
activation of the HIF pathway raises the possibility of
post-event intervention. In mice subjected to myocardial
infarction, increased levels of PHD2 and PHD3 persisted in
peri-infarction zones for at least 7 days, and co-localized with
increased levels of HIF-a chains and the HIF-regulated gene
products Glut-1 and HO-1 (210). Second, increased levels of
PHD3, with an associated decrease in HIF-1a, have been re-
ported in the aging mouse and human heart (161), suggesting
that the pathway may be particularly amenable to therapeutic
manipulation in the elderly population. Similar findings have
been reported in the rat brain (140). Finally, involvement of
HIF-1a in human cardiac disease is supported by recent
studies associating polymorphisms in the HIF-1a gene both
with the formation of coronary collaterals and with the nature
of initial presentation in patients with coronary artery disease
(79, 159). Larger association studies are required to confirm
and reconcile the findings of these preliminary studies. Resar
et al. (159) reported in a group of 100 patients with coronary
artery disease that the presence of the single nucleotide
polymorphism at HIF-1a residue 582 (C to T) was negatively

associated with the formation of coronary collaterals, and
speculated that this polymorphism may reduce cardiac HIF-1
activity. Hlatky et al. (79) later reported that the same poly-
morphism did indeed reduce HIF-1 activity in cell culture. In a
group of *1,350 patients in this study, its presence was a
predictor of stable angina, rather than myocardial infarction,
as a first presentation of coronary disease.

Cerebral hypoxia and ischemia

Over 1000 experimental pharmacological interventions
have failed to prevent the progression of infarction due to
cerebral ischemia (143) and only one, thrombolysis, has been
shown clearly to be effective in the setting of acute stroke
(68). Traditionally, treatments have been directed against one
specific pathophysiological target, for example, N-methyl
D-aspartate (NDMA) receptor antagonism, calcium antago-
nism, or free radical scavenging. More recently, research
has focused on multi-modal interventions with pleiotropic
effects (154). Hypothermia and IPC are probably the most
effective experimental strategies (80, 136), with the former
now approved for patients after cardiac arrest and in chil-
dren with hypoxic-ischemic encephalopathy (15, 179). They
offer protection by both inhibiting deleterious cellular
pathways and upregulating antiapoptotic and neuropro-
tective genes, including members of the Akt=protein kinase
B pathway (216)

As in the heart, there is evidence that the HIF pathway is
activated by IPC in the brain (14, 63, 88). Prior to the discovery
of the HIF hydroxylases, the ability of iron chelators and co-
balt chloride to reduce cell loss in models of focal and global
ischemia was attributed to reduced oxidative stress (10, 146,
147, 188). Subsequent studies suggest inhibition of the HIF
hydroxylases as the underlying mechanism of these protec-
tive effects, and PHD inhibitors have been reported to mimic
the neuroprotective effects of preconditioning both in vitro
and in vivo (70, 182). Siddiq et al., for example, synthesized a
peptide that binds all three PHD isoforms, stabilized HIF-1a,
activated HIF target genes, and protected embryonic rat cor-
tical neurons from oxidative stress (182). Other novel com-
pounds, for example, TM6008 and TM6089, believed by the
authors to be HIF–PHD specific, exhibited neuroprotective
properties after global cerebral ischemia in the gerbil. Unu-
sually, these compounds did not increase VEGF levels (137).
This hypoxically-regulated angiogenic factor has previously
been described as neuroprotective (190), but in the brain ap-
pears to mediate both neuroprotection and potentially dele-
terious changes in blood-brain barrier permeability, a dual
role which may have implications for the therapeutic use of
PHD inhibition in stroke (96, 111). Other specific HIF targets
that are showing promise as neuroprotectants include insulin-
like growth factor-1 (IGF-1, (105)) and erythropoietin (EPO).
Indeed, the latter provides one of the few examples of clinical
data on the therapeutic potential of HIF target genes, with
several small clinical trials suggesting a beneficial effect of
EPO on neurological outcome after cerebral ischemia (51, 69,
200). It will be interesting to see whether these exciting pre-
liminary results can be replicated or improved upon in the
future using PHD inhibitors.

Significantly, given the scarcity of post-event treatment
options in acute stroke, the role of PHD inhibition after the
ictus remains controversial (12, 31, 70, 182). In a mouse model
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of focal ischemia, post-ischemia PHD inhibition offered less
protection than pre-ischemic treatments (12). In rat pups,
Chen et al. found that early (i.e., immediately after 10 min of
severe cerebral hypoxia and ischemia) activation of HIF-1a
with DMOG worsened brain edema and blood-brain barrier
disruption, compared with hypoxia=ischemia alone (31). This
effect was associated with increased levels of VEGF. In this
context it is of interest that in a rat model of focal cerebral
ischemia, PHD inhibition by pretreatment with DMOG might
not only be cytoprotective, but also improve cerebral blood
flow by upregulating VEGF and endothelial nitric oxide
synthase (unpublished data, Nagel et al.). The role of HIF in
this effect is supported by the observation that DFO given
during temporary cardiac arrest in the rat appears to enhance
cerebral perfusion and improve neurologic deficit score in the
first 20 min following resuscitation (113). Effects on cerebral
blood flow have also been suggested in studies of other
neuroprotective candidates, and can complicate interpreta-
tion of experimental results (56).

The effects of PHD inhibition in the brain may depend not
only on timing of the stimulus, but also on cell type. In cell
culture studies, selective loss of HIF-1a in astrocytes provides
protection against hypoxia, whereas loss of HIF-1a in neuro-
nal cells increases susceptibility to hypoxia-induced damage
(201). This may relate to cell-specific differences in HIF-
regulated gene expression. A perceived advantage of PHD
inhibition over the administration of specific HIF target pro-
teins, such as VEGF, EPO, or IGF-1, is the activation of a wide
array of protective genes, with potential for synergistic ben-
eficial effects. However, this also raises the potential for the
activation of deleterious cellular pathways. BNIP3, for ex-
ample, is a member of the BH3-only family of proteins that is
known to be upregulated by HIF activation during hypoxia
(23), and the expression of which has been linked to hypoxia-
induced cell death in both the heart and brain (32). This bal-
ance of beneficial and deleterious effects of HIF activation in
brain or other tissues may be very difficult to predict from
cellular studies or animal models, and translation of promis-
ing experimental results into clinical advances seems likely to
require a greater emphasis on in vivo human studies in the
future (155, 157).

The efficacy of any systemic neuroprotectant will depend
upon its ability to access the central nervous system. In con-
trast to most PHD inhibitors, the known oral antiviral
agent tilorone has recently been identified as a potent HIF-
activating agent that readily crosses the blood-brain barrier
in rats. The mechanism of action of tilorone remains unknown
(156). It is thought to be independent of HIF hydroxylase in-
hibition (though the metabolism of tilorone to iron chelating
agents cannot be ruled out entirely).

Anemia and kidney disease

Commercial interest associated with the use of recombi-
nant human EPO, in combination with emerging knowledge
of the mechanisms regulating renal EPO expression (64, 189)
has stimulated interest in the use of PHD inhibitors for the
treatment of anaemia.

In the mouse, oral or intravenous PHD inhibition inhibits
renal HIF hydroxylase activity and increases EPO production
(81, 166). In male rhesus macaques, the oral PHD inhibitor
FG-2216 induced significant and reversible EPO induction

(81). FG-2216 was well-tolerated over several months, in-
creasing erythropoiesis and preventing anemia induced by
weekly phlebotomy. In July 2007, the biotechnology company
FibroGen completed a phase-2 clinical trial of FG-2216 in
patients with renal anemia, and is currently recruiting for a
similar trial of the compound FG-4592 in patients with anemia
and chronic kidney disease (see ClinicalTrials.gov). The
findings of these clinical studies have not yet been published
in a full peer-reviewed format.

Intravenous administration of DFO increases EPO pro-
duction in healthy volunteers (11, 158, 183) and excessive
erythropoiesis has been reported in families with HIF-
activating mutations (3, 61, 108, 149, 150). In combination
with data from genetically engineered animals (see section on
Insights from genetically engineered animals), these obser-
vations have identified HIF-2a and PHD-2 as the likely iso-
forms regulating EPO production in humans (149, 150).
Such tissue-specificity may guide the development of system-
specific PHD inhibitors. In the context of anemia, it is inter-
esting that excessive erythrocytosis in the mouse results both
from somatic PHD2 inactivation and from germ-line PHD1=
PHD3 double inactivation. This suggests a degree of re-
dundancy in the system, although PHD1=PHD3 deficiency
appears to stimulate erythrocytosis mainly through a hepatic
pathway, whereas PHD2 deficiency has its predominant ef-
fect via renal EPO production (191).

PHD inhibitors also show promise in renal ischemic dis-
ease. Ischemia in the tubulointerstitium is thought to play a
pivotal role in the pathophysiology of acute renal failure and
the progression of chronic kidney disease (92). In a rat model
of acute ischemic injury, pre- and post-ischemia treatment
with cobalt chloride reduced tubolointerstitial damage and
decreased serum creatinine levels. Cobalt reduced macro-
phage infiltration and increased the renal expression of sev-
eral cytoprotective HIF target-gene products, including EPO,
VEGF, and HO-1 (122). The PHD inhibitor FG-4487 mimics
the renoprotective effects of hypoxic preconditioning in mice,
reducing tissue injury and apoptosis (16), and the compound
FG-4497 protects against distal tubular injury in isolated
perfused rat kidneys (164). Furthermore, HIF hydroxylases
may also be involved in mediating the cardioprotective effects
of remote renal preconditioning ((93), see section on HIF hy-
droxylation substrates and co-factors).

Gastrointestinal disease

Recent evidence suggests a role for HIF-1a in mucosal bar-
rier function in the gut (195). Both DMOG and the specific
PHD inhibitor FG-4497 are reportedly protective in mouse
models of inflammatory bowel disease (42, 160). In the case of
DMOG, this protection was associated with reduced apoptosis
of colonic epithelial cells (42). Colitis is more severe in mice
with conditional intestinal epithelial cell knockout of HIF-1a
(94), and in rats the iron chelator quercetin attenuated exper-
imentally-induced colitis via activation of HIF-1 and VEGF.
This effect was abolished by iron supplementation (87).

CPH inhibitors have previously been used in the treatment
of experimental liver fibrosis (18, 123, 167). The small mole-
cule S4682, for example, reduced hepatic collagen accumula-
tion and decreased prevalence of ascites in a rat model of liver
injury (18). As 2OG analogues, such inhibitors are also likely
to have inhibited the HIF hydroxylases, and a growing body
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of evidence implicates VEGF in the pathology of hepatic in-
jury and repair (22, 38, 165).

Other applications for HIF hydroxylase inhibition

PHD inhibition may be a therapeutic target in several other
clinical settings, such as retinal diseases characterized by in-
adequate vascularization, including early retinopathy of
prematurity and retinitis pigmentosa (reviewed in ref. 8).
PHD inhibitors may also mimic the protective effects of retinal
ischemic preconditioning. In the mouse, pre-treatment with
DFO attenuated ischemia-induced retinal injury. This effect
was associated with increased HIF-1a levels and upregulation
of adrenomedullin, a HIF-dependent gene product previously
identified as neuroprotective in the retina (198, 217). Induction
of the HIF pathway during ischemic preconditioning may
also be of value in transplantation medicine. A recent small
randomized controlled trial in 60 liver transplant donors
demonstrated that a 10-min period of liver ischemia in the
donor significantly improved post-transplantation liver
function (2). This effect was associated with increased hepatic
HIF-1a levels, although no evidence was presented for in-
duction of HIF target genes.

Finally, there has been interest in the potential role for HIF-
mediated gene expression in the pathogenesis of placental
disease. Placental vascularization is abnormal in HIF-1a-=- or
HIF-2a-=- mouse embryos (40), and HIF-1-mediated upregu-
lation of the soluble VEGF receptor sFlt-1 has been implicated
in the etiology of pre-eclampsia (141). In contrast, however, it
has been suggested by other authors that HIF activation may
in fact protect against pre-eclampsia (67). This possibility is
supported by the intriguing report of a higher incidence of the
disease in nonanemic women taking iron supplements, which
could theoretically promote HIF-a breakdown by PHD-
activation (185, 218). In common with all the potential thera-
peutic areas discussed above, considerable further work will
be needed before the potential positive and negative effects of
PHD manipulation in this context can be appropriately bal-
anced.

Human models of long-term HIF upregulation

As noted above, there are few published reports of detailed
studies on the pharmacological effects of PHD inhibition and=
or HIF upregulation in humans. However, important (and
possibly cautionary) lessons may be learnt from patients with
rare monogeneic disease involving the PHD-HIF pathway.
Chuvash polycythemia, first described in the Russian Chu-
vash population, is an autosomal recessive disorder charac-
terized by excessive erythrocytosis, pulmonary hypertension,
and premature mortality due to cerebral vascular events and
peripheral thrombosis (26, 66, 184). Chuvash polycythemia is
caused by a specific 598C>T mutation in the VHL gene,
which reduces the affinity of the VHL protein for hydroxyl-
ated HIF-1a, inhibits HIF-1a degradation, and results in ex-
cessive activation of target genes including EPO, VEGF, and
the vasoconstrictor endothelin-1 (3). Patients with Chuvash
polycythemia appear not to be at risk of developing classical
von Hippel-Lindau disease, in which congenital inactivation
of one VHL allele predisposes to the development of vascular
tumours such as hemangioblastomas and renal cell carcinoma
(91). Nevertheless, these two clinical syndromes, both of
which are associated with excessive activation of the HIF

pathway (3, 91), highlight the requirement for long-term
studies to investigate the safety of iatrogenic PHD inhibition
in humans, and reinforce the likely importance of tissue-
and=or PHD isoform-specific interventions.

Activation of HIF Hydroxylases

Agents that specifically increase the hydroxylation activity
of PHDs are relatively unexplored (Table 4). Such agents have
potential therapeutic value for conditions in which HIF-
dependent gene expression contributes to disease pathology.
PHD activators identified to date fall into two categories: they
are either components of the HIF hydroxylation reaction, or
specific small molecule activators of the PHD enzymes.

HIF hydroxylation substrates and co-factors

In cultured human cells, supraphysiological supplemen-
tation of both iron and ascorbate enhances PHD activity and
potentiates the degradation of HIF (98, 99). Ascorbate is
proposed to promote the availability of Fe(II) to the active site
of the enzyme (99), most likely by maintaining iron in the
active reduced Fe(II) state. Among all the agents that have
been shown to influence PHD activity, iron and ascorbate
uniquely share the advantage of having been in routine clin-
ical use for decades. They are readily available, safe, and in-
expensive, and so deserve special attention as potential
therapeutic modulators of HIF hydroxylation.

As discussed above, 2OG is a rate-limiting co-substrate for
the PHDs under some circumstances (86, 121). In normoxic
cultures of human cells, increasing intracellular levels of 2OG
stimulates PHD activity and markedly reduces basal expres-
sion of HIF-1a protein (118), raising the possibility that 2OG
itself could be used to accelerate HIF degradation therapeu-
tically. This potential has yet to be explored in man, but 2OG
has been employed as a PHD activator in animal studies. In a
rat model of remote ischemic preconditioning, PHD inhibition
and renal preconditioning both had cardioprotective effects
that were abolished by prior intraperitoneal administration of
2OG (93).

Small molecule activators

In 2001, it was reported that hypoxia raises the intracellular
level of the lipid second messenger phosphatidic acid, pri-
marily through the action of diacylglycerol kinase (6). Phar-
macological inhibition of diacylglycerol kinase using the
specific inhibitor R59949 was further shown to impair the
hypoxia-induced accumulation of HIF-1a (6). It has since been

Table 4. Agents Reported to Increase PHD Enzyme

Activity in Cell Culture Studies

Reference

HIF hydroxylation substrates and co-factors
2-Oxoglutarate (a-ketoglutarate)=derivatives 118
Ascorbate 99
Iron 99

Small molecule activators
R59949 197
KRH102053 (PHD2 only) 33
Cyclosporin A 45
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proposed that R59949 inhibits the accumulation of HIF-1a
and HIF-2a by increasing PHD activity in cells (197). The
significance of this link between lipid second messengers and
PHD–HIF oxygen sensing is not yet understood, nor is the
mechanism of action for R59949. Suggested activating mech-
anisms include increasing the affinity of PHDs for oxygen,
regulating intracellular pools of ascorbate or iron, altering
levels of reactive oxygen species (ROS), and inhibition of
unidentified negative regulators of PHDs (197).

Targeted screening of a molecular library recently identi-
fied the compound KRH102053 as a novel small molecule
activator of PHD2 (33). This compound increased PHD2 ac-
tivity by 26% in vitro, and decreased levels of HIF-1a and
selected HIF target gene products in a variety of cell types.
This study focused on PHD2, considered to be the most im-
portant PHD isoform for the control of HIF-1a in normoxia (4).
The authors hypothesized that PHD2 could be regulated via
redox-related pathways, and screened a library of more than
600 chemicals with a benzopyran moiety and antioxidant
properties. Several PHD2 activating compounds were iden-
tified, of which KRH102053 was the most effective. Further
work is required, not least because the in vitro activation was
relatively small, and the mechanism of action unknown.

The immunosuppressive drug cyclosporin-A, used after
organ transplantation and in the treatment of severe auto-
immune disease, has also been shown to abrogate hypoxic
stabilisation of HIF-1a and HIF-1a-mediated cellular re-
sponses (45, 104, 115). This effect, which may contribute to the
nephrotoxicity associated with the drug, has been attributed
by some authors to a direct increase in PHD activity (45).
Others studies, however, suggest a PHD-independent mech-
anism of action (104, 115), and further experiments will be
required to resolve this issue.

Therapeutic Applications for PHD Activation

Research into therapeutic PHD activation is much less ad-
vanced than for PHD inhibition, yet the potential for thera-
peutic benefit is clear, particularly in the field of oncology.
Other important applications could include pulmonary hy-
pertension and proliferative retinopathies. The identification
of clinically useful small molecule activators may possibly
benefit from the development of structural analogues of
R59949 and KRH102053 (33, 197). In the meantime, there have
been interesting results from studies of ascorbate and iron in
cancer and pulmonary hypertension, respectively.

Cancer therapy

HIF-1a expression and activity is increased in many human
cancers as a result of intratumoral hypoxia (64, 175). HIF in-
fluences all major aspects of cancer biology, promoting cell
survival in the hypoxic microenvironment by increasing the
expression of proteins that regulate metabolic adaptation,
resistance to apoptosis, angiogenesis, and invasion and me-
tastasis (174). Therapeutic inhibition of HIF in solid malig-
nancies is a target of intense investigation, and many
anticancer agents under development or in clinical use have
some activity as HIF inhibitors (175). The potential for inhi-
bition of HIF through activation of the PHDs has not been
specifically exploited, although the history (albeit controver-
sial) of ascorbate as a cancer treatment provides an intriguing
link.

Interest in the use of ascorbate in cancer treatment was
stimulated in the 1970s when the Nobel Laureate Linus
Pauling, together with British cancer surgeon Ewan Cameron,
published retrospective data suggesting possible benefit of
ascorbate in patients with cancer (28, 29). Subsequent double-
blind placebo-controlled trials failed to replicate these find-
ings (41, 133), and while ascorbate treatment has remained
popular with alternative medicine practitioners, it has not
since featured in mainstream oncology practice. However,
there has recently been increasing interest in ascorbate as a
cancer therapy, with in vitro and in vivo work and some lim-
ited human data suggesting that very high dose ascorbate
(equivalent to intravenous human doses of up to 100 g=day)
may have positive effects in some tumours (59). These results
have been ascribed largely to redox-mediated effects (30), but
the precise mechanism of action of ascorbate remains un-
known. Further work will be needed to investigate whether
activation of the HIF hydroxylases could contribute, but this
possibility is supported by the recent finding of an anti-
tumorigenic effect of ascorbate in mouse tumour models,
which was dependent upon PHD2 activation and HIF-1a
downregulation (62). Nevertheless, although it is possible that
ascorbate therapy will find a place in combination with other
cytotoxic agents, the ‘evidence that vitamin C could help
human cancer patients is still thin’ (21).

Pulmonary hypertension

Through recent work in animals (25, 180, 214), including
humans (26, 61, 183, 184, 186), it has become apparent that
HIF plays an important role in regulating the development of
hypoxia-induced pulmonary hypertension. This results
from hypoxic pulmonary vasoconstriction and vascular re-
modeling and is a major cause of morbidity and mortality
among patients with lung disease and at high altitude (13).
Inhibition of HIF through increasing PHD activity (or by
other means) is a promising new therapeutic avenue in
pulmonary hypertension. Interestingly, cyclosporin-A at-
tenuates the development of hypoxia-induced pulmonary
hypertension in rats and mice, although this effect may well
be mediated by HIF- and=or PHD-independent cellular
pathways (48, 104, 106, 115).

Particularly interesting is the emerging body of work in-
vestigating the effects of iron on the pulmonary vasculature in
humans (89). Chelation of iron with DFO mildly elevates
pulmonary arterial pressure (11), and a recent study estab-
lished the existence of a substantial interaction between iron,
hypoxia, and the pulmonary circulation (183). In a series of
8-h experiments in healthy volunteers, intravenous infu-
sions of iron blunted pulmonary vasoconstrictive responses
to hypoxia and chelation of iron with DFO enhanced the
constrictor response (183) (Fig. 6). These studies were predi-
cated on the known requirement for iron of HIF hydroxyl-
ation, and the established involvement of HIF in pulmonary
physiology, but changes in other oxygen-sensitive pathways
cannot be excluded. Such an effect could arise through the
interaction of HIF hydroxylases with other pathways,
through HIF-PHD-independent redox-mediated events, or
through an effect of iron on previously unidentified iron de-
pendent oxygenases or other factors. Nevertheless, these re-
sults may herald a therapeutic potential for PHD activation in
hypoxic pulmonary hypertensive disease (89).
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Vasoproliferative retinopathies

Vasoproliferative retinopathies include major causes of vi-
sual impairment and blindness such as proliferative diabetic
retinopathy and retinopathy of prematurity. These are charac-
terized by retinal hypoxia and neovascularization in which HIF
plays a mediating or contributory role (8). Much attention has
been focused on the potential for treating these conditions by
inhibiting HIF activity, and early results obtained from studies
in animal models have been promising (97, 172). Vasoproli-
ferative retinopathies cause substantial morbidity, and the de-
velopment of PHD-activators that are safe and effective in
treating these diseases would be very welcome.

Conclusions

A growing body of experimental and preclinical data
suggests that inhibition of the HIF hydroxylases may be of
benefit in some of the leading diseases in the developed
world, including ischemic heart disease, cerebrovascular
disease, and anemia. Similarly, enhancing PHD (and maybe
FIH) activity holds promise in cancer, pulmonary vascular
disease, and retinal disease. The proposed benefit in all these
conditions is usually attributed to the influence of these en-
zymes on the HIF system, and there is now good evidence for
specific roles for HIF-a and=or PHD isoforms in particular
physiological and pathological processes. As our under-
standing of tissue and temporal specificity with the HIF sys-
tem develops further, so too will the potential for specific
therapeutic intervention. Novel in vivo imaging techniques,
for example, the use of noninvasive bioluminescent reporter

assays for enzyme activity (166), may provide new insights in
this area by allowing downstream physiological effects to be
more accurately attributed to changes in the activity of spe-
cific enzymes or signaling pathways. In addition, recent data
suggesting non-HIF targets for the HIF hydroxylases, partic-
ularly FIH (37, 209), may be very important both for targeting
therapy and understanding or avoiding non-therapeutic ef-
fects.

Despite the undoubted potential in this field, promising
preclinical developments have yet to translate into important
clinical advances. Ongoing clinical trials investigating the use
of PHD inhibitors in renal anemia appear encouraging, but
peer-reviewed results are not yet available. Further clinical
and in vivo studies will be necessary to clarify the effects of
human HIF hydroxylase manipulation, and in particular to
move towards an answer to important questions about the
specific therapeutic niche of any such intervention. In ische-
mic vascular disease, for example, does PHD inhibition have a
role in the acute setting, or should its promise be considered
mainly in primary and=or secondary prevention? In the set-
ting of chronic disease such as hypoxia-induced pulmonary
hypertension or cancer, could simple correction of iron defi-
ciency influence disease progression by altering PHD activi-
ty? Do well-established therapeutic agents such as aspirin
(114) have as yet unknown effects on the HIF hydroxylases?
Mirroring the importance of the HIF pathway in human
health and disease, the possible therapeutic applications for
HIF hydroxylase manipulation are myriad. The translation of
this preclinical potential into clinical advances represents a
considerable, but very exciting, challenge.

FIG. 6. Influence of prior iron infusion on the pulmonary vascular effects of sustained hypoxia in healthy human
volunteers. Left panel shows the pulmonary vascular response (PASP¼pulmonary artery systolic pressure, estimated using
Doppler echocardiography) to a 20-min period of acute hypoxia (end-tidal oxygen partial pressure¼ 50 mmHg), before and
after a period of 8 h of sustained hypoxia (end-tidal oxygen partial pressure¼ 55 mmHg). The left panel shows that after saline
infusion, sustained hypoxia causes an increase in baseline PASP and an increase in the sensitivity of the pulmonary circu-
lation to acute hypoxia. The right panel shows that this effect is almost abolished by iron infusion (200 mg), administered
immediately prior to the first period of acute hypoxia. Symbols show mean� SEM, N¼ 8. Adapted and reprinted with
permission from Smith et al. (183).
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Abbreviations Used

Asn803, Asn851¼ asparagine residues 803 and 851
CAD¼C-terminal transactivation domain

Co(II)¼ cobalt
COX-2¼ cyclooxygenase-2

CPH¼ collagen prolyl hydroxylase
DMOG¼dimethyl-oxaloylglycine

DSBH¼double-stranded b-helix
EPO¼ erythropoietin

Fe(II)¼ ferrous iron
FIH¼ factor inhibiting HIF
HIF¼hypoxia-inducible factor

HO-1¼heme-oxygenase-1
IGF-1¼ insulin-like growth factor-1
iNOS¼ inducible nitric oxide synthase

IPC¼ ischemic preconditioning
Mn(II)¼manganese
Ni(II)¼nickel

NMDA¼N-methyl D-aspartate
NOFD¼N-oxalyl-D-phenylalanine

NOG¼N-oxaloylglycine
2OG¼ 2-oxoglutarate (also known as

a-ketoglutarate)
PHD¼prolyl hydroxylase domain enzyme

(also known as EGLN proteins)
Pro402, Pro564¼proline residues 402 and 564

pVHL¼von Hippel–Lindau tumor
suppressor protein

siRNA¼ small inhibitory RNA
VEGF¼vascular endothelial growth factor
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