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suitably equipped laboratory. Future work will focus on immune profile
guided therapeutic trials for immuno-dysfunction as well as an exploration
of whether the immune defects identified are simply additive or if there is
synergism between them.

Funding and acknowledgements: This work was funded by an academic
clinical training fellowship from the Chief Scientist Office (CAF/08/13), the
Sir Jules Thorn Charitable Trust and NHS Lothian Research and
Development.

Figures for this abstract can be accessed at www.ics.ac.uk/
Meetings_Seminars/main_meetings/gold_medal_ab
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Iron is an important factor in pulmonary
physiology

TG Smith, Nuffield Department of Anaesthetics, John Radcliffe Hospital,
Oxford, UK

Scientific background

The interaction between hypoxia and pulmonary physiology is central to
intensive care medicine. Physiological responses to hypoxia include an
increase in pulmonary arterial pressure caused by hypoxic pulmonary
vasoconstriction. This phenomenon is important in intensive care
medicine, such as in patients with acute respiratory distress syndrome
(ARDS),' as well as in other areas of anaesthesia and medicine.? However it
can become pathological — pulmonary hypertension frequently complicates
hypoxic lung disease and worsens patient survival.>* The mechanisms
underlying pulmonary responses to hypoxia are poorly understood. This
body of work has investigated these mechanisms and their therapeutic
implications. Our original hypothesis was that the hypoxia-inducible factor
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Figure 1. Effect of intravenous iron on systolic pulmonary artery pressure and
serum ferritin in healthy sea-level residents during altitude hypoxia at 4,340
metres. Baseline measurements (Day 0) were made at sea level prior to
ascent to high altitude. Dashed lines and open symbols indicate pre-infusion
measurements, while solid lines and closed symbols indicate post-infusion
measurements. Infusions were given immediately after measurements were
made on the morning of Day 3 (indicated by the dotted vertical line). Black
lines and symbols indicate the group that received an infusion of iron sucrose
200 mg (n=11), while grey lines and symbols indicate the group that received a
placebo infusion (n=11). Infusion with iron reversed much of the elevation in
pulmonary artery systolic pressure caused by hypoxia (p<0.02)." Values shown
are mean — SEM.

(HIF) family of transcription factors, which are known to control
intracellular responses to hypoxia,® also control systemic cardiopulmonary
responses to hypoxia to some extent. In each of the human studies, the
primary outcome measure was pulmonary artery systolic pressure assessed
by Doppler echocardiography.

Study of patients with a rare mutation

Although HIF is best known as the transcriptional activator of
erythropoietin, in fact it controls cellular responses to hypoxia throughout
the body® In order to examine involvement of HIF in systemic physiology,
we studied the cardiopulmonary phenotype associated with Chuvash
polycythaemia, an extremely rare autosomal recessive disease in which
HIF-mediated gene expression is pathologically activated. Twelve
participants were exposed to 10-minute periods of hypoxia on a
mouthpiece system, using the technique of dynamic end-tidal forcing to
control end-tidal partial pressures of oxygen (PETO,) and carbon dioxide.
Mild hypoxia (PETO, 70 mm Hg [9.3 kPa]) and moderate hypoxia (PETO,
50 mm Hg [6.7 kPa]) were tested. Patients with Chuvash polycythaemia
were found to have pulmonary hypertension, and displayed abnormally
vigorous pulmonary hypertensive, ventilatory and heart rate responses to
hypoxia.”® Remarkably, the increase in pulmonary arterial pressure caused
by hypoxia was 5-10 times greater in patients than control participants
(p<0.01). This was the first study to elucidate a specific genetic
determinant of human cardiopulmonary hypoxia physiology.

Study of mice with an engineered mutation

In a related animal study we used whole body plethysmography to measure
the ventilatory response to acute hypoxia (12% oxygen) in various
genetically engineered knockout mice. Compared with littermate controls,
the ventilatory response was ~60% greater in mice deficient for prolyl
hydroxylase domain-2, an enzyme that regulates HIF activity (p<0.01).°
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Figure 2. Effect of venesection on systolic pulmonary artery pressure and
serum ferritin in chronic mountain sickness patients during altitude hypoxia
at 4,340 metres. Eleven patients with chronic moutain sickness were studied.
Measurements shown in this figure are those made prior to any iron or
placebo infusions. The black bar indicates the period over which staged
isovolaemic venesection of two litres of blood occurred. Over the following
two weeks, a progressive reduction in ferritin (p<0.001) was accompanied

by a substantial increase in pulmonary artery systolic pressure compared with
pre- and post-venesection values (p<0.03). Haematocrit and cardiac output
remained stable over this period and did not account for these changes
(complete results reported in JAMA publication)." Values shown are mean

— SEM.

Laboratory study of iron and pulmonary physiology

Together these human and animal studies implicated HIF in regulating
cardiopulmonary responses to hypoxia. Our next study sought to
manipulate these responses by manipulating HIF pharmacologically,
exploiting the observation that intracellular HIF activity varies with iron
availability® Eight healthy volunteers took part in a placebo-controlled
crossover study.!® Each volunteer undertook two experimental days, one
beginning with an intravenous infusion of saline placebo and one
beginning with an intravenous infusion of iron sucrose 200 mg. Following
the infusions, volunteers were exposed to acute hypoxia (as above) and to
eight hours of sustained hypoxia in our laboratory’s purpose-built hypoxia
chamber (PETO, 55 mm Hg [7.3 kPa]). The normal increase in pulmonary
arterial pressure caused by sustained hypoxia (a 23% increase in this study)
‘was prevented by prior infusion of iron (p<0.001).'

Field study of iron and pulmonary physiology using altitude
hypoxia

Before this research programme, iron had not been considered as a factor in
the aetiology or clinical management of any form of pulmonary
hypertension. To explore whether this novel effect of iron might be
clinically important, we conducted a major field study in the remote Andes
of Peru.!! Two randomised, double-blinded, placebo-controlled protocols
were conducted in Cerro de Pasco (altitude 4,340 m) where barometric
pressure is ~450 mm Hg (equivalent to breathing ~12% oxygen at sea
level). In the first protocol, 22 healthy sea-level residents were studied over
one week of hypoxia, and received intravenous iron sucrose (200 mg) or
saline placebo on the third day Infusion of iron reversed ~40% of the
pulmonary hypertensive response to hypoxia (p<0.02; see Figure 1). In the

second protocol, 11 high-altitude residents diagnosed with chronic
mountain sickness (haemoglobin >21 g/L) were studied over one month of
hypoxia. Patients underwent staged isovolaemic venesection of two litres of
blood, and two weeks later received intravenous iron sucrose (400 mg) or
placebo, which were subsequently crossed over. Progressive iron deficiency
induced by venesection was associated with a ~25% increase in pulmonary
artery systolic pressure (p<0.03; see Figure 2). This study demonstrated
that hypoxic pulmonary hypertension is profoundly influenced by iron
availability in a manner that is consistent with the biochemistry of HIE
These findings were recently published in the Journal of the American
Medical Association.!

Conclusions and ongoing work

This research programme has provided evidence that HIE which
coordinates the cellular response to hypoxia, also plays a major role in
regulating the actual organ systems upon which cellular oxygen delivery
ultimately depends. It has further established that hypoxic pulmonary
hypertension is attenuated by iron supplementation and exacerbated by
iron depletion. These findings have immediate clinical implications for the
patients studied and, more generally, suggest there may be a place for
careful adjustment of iron balance in the broader management of hypoxic
lung disease. It is unusual for an agent as familiar, safe and inexpensive as
iron to offer promise for a novel indication, and even a small beneficial
effect in critically ill patients such as those with ARDS or end-stage
pulmonary hypertension would be significant. A
commented that our work ‘has vast clinical implications for the sickest
patients seen in the hospital’ and asked the question ‘Should hypoxic
patients in the intensive care unit receive supplemental iron?".!> At the least,
until further evidence is forthcoming it may be prudent to avoid iron
deficiency in critically ill patients with pulmonary hypertension.!! It is

recent editorial

interesting that although the reported prevalence of true iron deficiency in
intensive care is ~10%,"!* in practice this is rarely treated or even
measured. We are preparing to extend our work with studies in intensive
care and studies of ascorbate (vitamin C), which has the same intracellular
effect on HIF as iron and may present a better therapeutic alternative.'>'®
Funding: This body of work has been funded by the Wellcome Trust
and the Dunhill Medical Trust. The author reports no conflict of interest.
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