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1   |   INTRODUCTION

Maximal aerobic exercise capacity (VO2max) is de-
creased in healthy individuals at high altitude or during 

hypoxia at sea level (Fulco et al., 1998; Pugh et al., 1964), 
and this is associated with a reduction in maximal car-
diac output (Cymerman et  al.,  1989; Pugh et  al.,  1964; 
Reeves et al., 1990). However, the extent to which these 
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Abstract
Maximal exercise capacity is reduced at altitude or during hypoxia at sea level. 
It has been suggested that this might reflect increased right ventricular after-
load due to hypoxic pulmonary vasoconstriction. We have shown previously 
that the pulmonary vascular sensitivity to hypoxia is enhanced by sustained 
isocapnic hypoxia, and inhibited by intravenous iron. In this study, we tested 
the hypothesis that elevated pulmonary artery pressure contributes to exer-
cise limitation during acute hypoxia. Twelve healthy volunteers performed in-
cremental exercise tests to exhaustion breathing 12% oxygen, before and after 
sustained (8-h) isocapnic hypoxia at sea level. Intravenous iron sucrose (n = 6) 
or saline placebo (n = 6) was administered immediately before the sustained 
hypoxia. In the placebo group, there was a substantial (12.6 ± 1.5 mmHg) rise 
in systolic pulmonary artery pressure (SPAP) during sustained hypoxia, but 
no associated fall in maximal exercise capacity breathing 12% oxygen. In the 
iron group, the rise in SPAP during sustained hypoxia was markedly reduced 
(3.4 ± 1.0 mmHg). There was a small rise in maximal exercise capacity follow-
ing sustained hypoxia within the iron group, but no overall effect of iron, com-
pared with saline. These results do not support the hypothesis that elevated 
SPAP inhibits maximal exercise capacity during acute hypoxia in healthy 
volunteers.
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observations are causally related remains uncertain 
(Anholm & Foster, 2011; Wagner, 2010).

It has been suggested that hypoxic pulmonary va-
soconstriction might limit VO2max at high altitude by 
increasing pulmonary vascular resistance and there-
fore right ventricular afterload (Naeije,  2011; Naeije & 
Chesler, 2012). In support of this possibility, aerobic ex-
ercise capacity both at sea level and at altitude appears 
to correlate with pulmonary vascular distensibility 
(Lalande et  al.,  2012; Pavelescu et  al.,  2013) and pul-
monary vasodilators have been shown in some studies 
to improve VO2max during acute hypoxia or at high al-
titude (Faoro et  al.,  2009; Ghofrani et  al.,  2004; Naeije 
et al., 2010). In opposition, supplemental oxygen is re-
ported by some authors to return VO2max to sea level 
values during prolonged exposure to hypoxia without 
influencing pulmonary vascular resistance (Groves 
et  al.,  1987; Pugh et  al.,  1964), and modeling studies 
suggest that VO2max is largely independent of maximal 
cardiac output during hypoxia, as any rise in convective 
oxygen delivery is offset by diffusive limitation across 
capillaries in the lungs and muscle (Wagner, 1996, 2010).

We have previously demonstrated that hypoxic pul-
monary vasoconstriction in healthy humans exposed to 
sustained eucapnic hypoxia consists of an initial modest 
rise in pulmonary artery pressure that begins within sec-
onds, followed by a more gradual rise in pulmonary artery 
pressure that develops over 4–8 h (Dorrington et al., 1997; 
Talbot et al., 2005). Upon return to normoxia, the pulmo-
nary pressure initially falls rapidly, but remains elevated 
above baseline for at least 2 h, and during this period re-
exposure to acute hypoxia elicits an exaggerated acute rise 
in pulmonary artery pressure, suggesting sensitization of 
the pulmonary vascular smooth muscle cells to hypoxia 
(Dorrington et  al.,  1997; Frise & Robbins,  2015). The 
mechanism of this sensitization remains uncertain, but 
it is likely to be under the control the hypoxia-inducible 
factor (HIF) transcriptional pathway, which is known to 
be regulated not only by oxygen, but also by cellular iron 
availability (Knowles et al., 2003; Wang & Semenza, 1993). 
Accordingly, intravenous iron infusion has been shown to 
inhibit the pulmonary vascular response to hypoxia both 
at sea level and at altitude (Patrician et al., 2022; Smith 
et al., 2008, 2009; Willie et al., 2021).

In the current study, we hypothesized that the ele-
vation of pulmonary artery pressure during sustained 
hypoxia would reduce maximal exercise capacity during 
hypoxia, and that this effect would be mitigated by prior 
iron infusion. To explore this hypothesis, we measured 
VO2max in healthy volunteers breathing 12% oxygen, 
before and after exposure to sustained (8 h) isocapnic 
hypoxia, with or without prior infusion of intravenous 
iron.

2   |   METHODS

2.1  |  Participants

Twelve volunteers participated in the study (8 male, 4 
female, age 25 ± 5 years). All were healthy non-smokers 
with no history of respiratory or cardiovascular disease. 
Baseline characteristics are provided in Table 1. All par-
ticipants provide written, informed consent. The study 
was approved by the National Research Ethics Service 
(reference 10/H0604/73), United Kingdom, and per-
formed in accordance with principles of the Declaration 
of Helsinki.

2.2  |  Protocol

The experimental protocol included three visits to the 
laboratory for each participant, and is summarized in 
Figure  1. The baseline visit included measurements 
of iron status (serum iron, transferrin, ferritin and 
hemoglobin concentrations, and mean cell volume), 

T A B L E  1   Baseline characteristics. Iron indices and 
hemodynamic parameters were measured at the baseline visit 
(before any iron supplementation). VO2max was unavailable for 
two volunteers at baseline (one in each group) due to technical 
difficulties with mass spectrometry. For all other measurements 
n = 6 in each group and all values are shown as mean ± SD.

Iron group Placebo group

Age (years) 25 ± 4 25 ± 6

Weight (kg) 76 ± 16 76 ± 15

Height (cm) 179 ± 10 178 ± 14

BMI (kg/m2) 23 ± 3 24 ± 3

Hemoglobin (g/L) 145 ± 10 143 ± 10

Mean cell volume (fL) 90 ± 5 91 ± 5

Ferritin (μg/L) 112 ± 83 65 ± 54

Serum iron (μmol/L) 21 ± 6 22 ± 11

Transferrin (g/L) 2.7 ± 0.5 2.7 ± 0.3

Transferrin saturation (%) 37 ± 15 37 ± 18

Arterial oxyhemoglobin 
saturation (%)

98 ± 1 98 ± 1

Mean arterial blood pressure 
(mmHg)

91 ± 5 86 ± 8

Systolic pulmonary artery 
pressure (mmHg)

24.3 ± 4.5 24.2 ± 2.4

Cardiac output (L/min) 5.0 ± 1.1 5.3 ± 0.5

VO2max (mL/min/kg) 47.9 ± 8.2 46.0 ± 8.5

Peak work rate (W) 301 ± 71 299 ± 81

Abbreviations: BMI, body mass index; VO2max, maximal oxygen uptake, 
measured breathing air.
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measurement of the pulmonary vascular response dur-
ing acute (20 min) isocapnic hypoxia, and an incre-
mental exercise test to exhaustion breathing room air 
in the laboratory (altitude 60 m). Visit 2 took place at 
least a week later in the late afternoon/evening, and 
consisted of an incremental exercise test to exhaustion 
while breathing 12% oxygen, equivalent to an altitude 
of ~4700 m. Visit 3 took place 2–3 days after visit 2. In 
the morning on visit 3, participants were randomized to 
receive an intravenous infusion of either iron sucrose 
(n = 4 males, 2 females) or saline placebo (n = 4 males, 
2 females). Each participant was then exposed to 8 h of 
isocapnic hypoxia in a custom-built normobaric cham-
ber, during which the systolic pulmonary artery pres-
sure (SPAP) was measured by echocardiography every 
1–2 h. This was followed within 20 min by an incremen-
tal exercise test to exhaustion breathing 12% oxygen, 
identical to the test undertaken during visit 2.

2.3  |  Exposure to acute hypoxia at rest

To quantify the pulmonary vascular response to acute 
hypoxia at baseline and confirm echocardiographic win-
dows for measurement of pulmonary artery pressure 
during hypoxia at subsequent visits, participants were 
exposed during the baseline visit to a short period of iso-
capnic hypoxia while reclining in the left lateral position 
and breathing through a mouthpiece. Gas control was 
achieved by means of dynamic end-tidal forcing (Robbins 
et al., 1982b), and the exposure consisted of an initial 5-
min period of normoxia (end-tidal partial pressure of oxy-
gen, PETO2, 100 mmHg), followed by 20 min of hypoxia 
(PETO2 50 mmHg), and then by a further 10 min of nor-
moxia. The end-tidal partial pressure of carbon dioxide 
(PETCO2) was maintained close to each volunteer's base-
line value.

2.4  |  Exercise testing

Exercise tests were performed using a modified 
electrically-braked cycle ergometer (Mijnhardt KEM3, 
Cardiokinetics Salford, UK). Participants breathed 
through a mouthpiece with their nose occluded. 
Respired gases were sampled through a fine catheter 
and the composition analyzed continuously by mass 
spectrometry (Airspec MGA 3000, UK). Respiratory 
volumes were measured using a combination of a tur-
bine (Cardiokinetics Ltd, UK) and pneumotachograph 
(Fleisch, Switzerland), as previously reported (Robbins 
et al., 1982a). Ventilation is reported at body temperature 
and pressure saturated (BTPS). Oxygen consumption was 
calculated breath-by-breath as the difference between the 
inspired and expired oxygen content. Oxyhemoglobin 
saturation was measured continuously using a pulse 
oximeter and heart rate was measured with a three-lead 
electrocardiogram (ECG).

At the baseline visit, the exercise test was undertaken 
breathing air. During visits 2 and 3, the exercise tests were 
undertaken breathing 12% oxygen. The exercise protocol 
during each visit was otherwise the same. After 1 min of 
unloaded cycling, the workload was increased by 20 W/
min until exhaustion, defined as an inability to maintain 
the required pedaling frequency of 60 revolutions per 
min. At that point, using a previously-reported protocol 
(Rossiter et  al.,  2006), the ergometer was unloaded for 
5 min, before the workload was returned to a value 105% 
of the previous maximum for a period of up to 3 min, or 
until the point of exhaustion. The VO2max was defined 
as the mean oxygen uptake over the 10 breaths immedi-
ately prior to exhaustion, and the higher of the two peaks 
was used in the study analysis. Peak workload was calcu-
lated using the duration of time spent exercising at the 
final increment at the point of exhaustion, based on an 
established approach (Kuipers et  al.,  1985). An example 

F I G U R E  1   Study design. The baseline visit and visit 2 were identical for all 12 participants. On the morning of visit 3, participants were 
randomized to receive an infusion of either iron sucrose (n = 6) or saline (n = 6), shortly before being exposed to 8 h of sustained hypoxia 
followed by an exercise test breathing 12% oxygen. PETO2, end-tidal partial pressure of oxygen.
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exercise test performed breathing 12% oxygen during visit 
2 is provided in Figure 2.

At visits 2 and 3, venous blood was sampled every min-
ute during exercise tests, using an indwelling cannula in 
the antecubital fossa, for measurement of blood lactate 
concentration. No blood sampling was performed during 
exercise at the baseline visit.

In two participants at the baseline visit, VO2max could 
not be measured due to technical problems with mass 
spectrometry, but peak work load and other exercise pa-
rameters were recorded. In one participant at visit 2 and 

one participant at visit 3, oxyhemoglobin saturation could 
not be accurately measured due to poor signal. In two par-
ticipants at visit 3, heart rate could not be accurately re-
corded due to poor signal.

2.5  |  Iron and saline infusions

On the morning of visit 3, block randomization was used 
to allocate participants to the iron or saline group (n = 6 
in each case). Those in the iron groups received an intra-
venous infusion of Fe(III)-hydroxide sucrose (200 mg in 
100 mL 0.9% saline, administered over 30 min; Vifor Inc, 
St Gallen, Switzerland). Those in the saline group received 
an infusion of 100 mL 0.9% saline over 30 min. Infusion 
were administered from behind a screen and infusion 
lines were taped, to ensure that participants remained 
unaware which infusion they had received.

2.6  |  Exposures to sustained 
isocapnic hypoxia

Within 30 min of iron or saline infusion at visit 3, par-
ticipants were exposed to 8 h of isocapnic hypoxia in a 
custom-built normobaric chamber. End-tidal gases were 
controlled using a computerized prediction–correc-
tion system that has been described in detail elsewhere 
(Howard et  al.,  1995), such that the PETO2 was main-
tained at 55 mmHg and the PETCO2 was maintained at 
each individual's baseline value. Volunteers were pro-
vided with light refreshment ad libitum, and were free to 
move around the chamber. Every 1–2 h, volunteers were 
asked to rest in the left lateral position for at least 5 min, 
prior to assessment of pulmonary artery pressure and car-
diac output using Doppler echocardiography.

2.7  |  Doppler echocardiography

During exposures to acute and sustained hypoxia at rest, 
Doppler echocardiography (Vivid-i; GE Healthcare, 
UK) was used to determine the maximum systolic pres-
sure gradient across the tricuspid valve, and the SPAP 
was estimated using the modified Bernoulli equa-
tion and an estimated right atrial pressure of 5 mmHg 
(Smith et al., 2008; Yock & Popp, 1984). Stroke volume 
was estimated by measuring the velocity of blood flow 
just below the aortic valve and the diameter of the left 
ventricular outflow tract at the same point, and heart 
rate was measured using a three-lead ECG. Cardiac 
output was estimated as previously described (Balanos 
et al., 2005).

F I G U R E  2   Example exercise test breathing 12% oxygen. (a) 
Work rate, (b) oxygen uptake, VO2, (c) arterial oxyhemoglobin 
saturation, SpO2. This tracing shows unloaded cycling breathing 
air for 3 min, before switching to inspired gas containing 12% 
oxygen, balance nitrogen. Unloaded cycling continued for 1 min, 
and thereafter work load was increased by 20 W every min until 
exhaustion, defined as an inability to maintain the pedaling 
frequency of 60 per min. At the point of exhaustion, following the 
protocol of Rossiter et al. (2006), the ergometer was unloaded for 
5 min before the workload was returned to a value 105% of the 
previous maximum for a period of up to 3 min, or until the point of 
exhaustion.
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2.8  |  Statistical analysis

The Shapiro–Wilk test was used to assess the distribu-
tion of the data, and provided no evidence of deviation 
from the normal distribution for any parameter. For 
comparisons between groups at baseline, and between 
exercise parameters breathing air and 12% oxygen, un-
paired or paired t-tests were therefore used, respectively. 
Assessment of changes during exposure to acute or sus-
tained hypoxia, and of changes in exercise parameters 
between visits 2 and 3, were made using repeated meas-
ures ANOVA (rmANOVA). Comparisons between iron 
and saline groups were also made using rmANOVA, with 
time or visit as a within-participant factor and group (iron 
or saline) as a between-participant factor (IBM SPSS sta-
tistics). Correlations were quantified using Pearson's cor-
relation coefficient. Statistical significance was assumed 
when p < 0.05.

3   |   RESULTS

3.1  |  Baseline iron status and responses 
to hypoxia and exercise at rest

Table 1 shows that the baseline iron status for the two 
groups was similar. The iron indices for all participants 
were in the normal range, with the exception of the 
baseline ferritin concentration for one female partici-
pant in the iron group, who was noted incidentally to 
have a ferritin below the lower limit of normal, with a 
normal transferrin saturation and normal hemoglobin 
concentration. The iron group overall had a slightly 
higher ferritin concentration than the placebo group at 
baseline, but this difference was not statistically signifi-
cant (p = 0.24).

Table  1 also includes the baseline measurements of 
SPAP and cardiac output, as well as VO2max and maximal 
work rate breathing air. Across all 12 participants, there 
were significant correlations between baseline hemoglo-
bin concentration and both VO2max (R = 0.866, p < 0.001) 
and maximal work rate (R = 0.737, p < 0.01). Similarly, 
there was a significant association between ferritin con-
centration and baseline VO2max (R = 0.675, p < 0.05) and 
work rate (R = 0.616, p < 0.05).

The pulmonary vascular response to acute isocapnic 
hypoxia is shown in Figure 3, and consists of a rapid rise 
in SPAP that starts within seconds of exposure to hypoxia, 
followed by a plateau that lasts for the duration of the 
20 min exposure. The cardiac output rose with a similar 
time course, and changes in both SPAP and cardiac were 
very similar in the iron and saline groups. There was no 
correlation between the magnitude of the rise in SPAP 

during acute hypoxia and the exercise capacity breathing 
air at the baseline visit (for VO2max R = 0.154, p = 0.671; 
for peak work rate R = 0.02, p = 0.950).

3.2  |  Exercise parameters breathing 
12% oxygen

Across all participants, there was a 19.4 ± 1.5% fall in 
maximal work rate when breathing 12% oxygen, com-
pared with breathing air (n = 12, p < 0.001). In two par-
ticipants (one in each group), VO2max could not be 
measured during exercise breathing air due to technical 
problems at the baseline visit, as above. For the remain-
ing participants, there was a 24.1 ± 3.0% fall in VO2max 
(n = 10, p < 0.001) breathing 12% oxygen during visit 2, 
compared with air, which was accompanied by a fall 
in peak ventilation (118 ± 9 compared with 108 ± 10 L/
min; n = 10, p < 0.01) and heart rate (170 ± 4 compared 
with 159 ± 4 beats/min; n = 10, p < 0.05). At VO2max, the 
peripheral oxyhemoglobin saturation was 95.2 ± 0.7% 
breathing air, and 76.8 ± 0.9% breathing 12% oxygen 
(n = 10, p < 0.001).

There was no significant correlation between the rise 
in SPAP during acute hypoxia at rest at baseline and ei-
ther VO2max or maximal work rate breathing 12% ox-
ygen at visit 2. There was also no correlation between 
baseline hemoglobin or ferritin concentration and 
VO2max breathing 12% oxygen, but both variables cor-
related with maximal work rate breathing 12% oxygen 
(R = 0.777, p < 0.01 for hemoglobin; R = 0.616, p < 0.05 
for ferritin).

3.3  |  Iron infusion and pulmonary 
vascular response to sustained hypoxia

Iron and saline infusions administered at the start of 
visit 3 were well tolerated. In the saline group, there was 
an apparent small fall in transferrin saturation by the 
end of visit 3, compared with the pre-infusion values, 
with no change in ferritin concentration (Figure 4). The 
former is in keeping with known diurnal variation in 
serum iron, and did not reach statistical significance. In 
contrast, infusion of iron sucrose at visit 3 produced a 
substantial rise in both transferrin saturation (p < 0.001) 
and ferritin concentration (p < 0.01) by the end of the 
day (Figure 4).

Figure 5 shows that the end-tidal gas profiles and pe-
ripheral oxyhemoglobin saturation were very similar for 
the two groups during exposure to sustained isocapnic hy-
poxia. In the saline group, this was associated with a pro-
gressive rise in SPAP over the 8-h exposure, with a mean 
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increase of 12.6 ± 1.5 mmHg by the end of the exposure. In 
the iron group, the rise in SPAP over the first 2 h of the ex-
posure was similar, but thereafter there was little further 

rise in SPAP, with a mean increase by the end of the ex-
posure to hypoxia of just 3.4 ± 1.0 mmHg. This represents 
very substantial inhibition of the pulmonary vascular re-
sponse to hypoxia by prior iron infusion, compared with 
saline (p < 0.01).

Figure 5 also shows changes in heart rate and stroke 
volume in the two groups during the chamber expo-
sure. In the placebo group, heart rate rose by an aver-
age of 15.5 ± 5.2 beats/min, with a corresponding rise of 
1.3 ± 4.6 beats/min in the iron group. However, the effect 
of iron on heart rate did not reach statistical significance 
(p = 0.177). Similarly, there was no effect of iron infusion 
on stroke volume (p = 0.610) or overall cardiac output 
(p = 0.377).

3.4  |  Effect of sustained hypoxia 
with and without iron on exercise 
capacity breathing 12% oxygen

As shown in Figure 6, despite the substantial rise in SPAP 
in the saline group during sustained hypoxia, there was 
no clear difference in VO2max breathing 12% oxygen 

F I G U R E  3   Exposure to 20 min of acute isocapnic hypoxia end-tidal partial pressure of oxygen (PETO2) 50 mmHg, end tidal partial 
pressure of carbon dioxide (PETCO2) 2 mmHg above each participant's normal value. (a) Peripheral oxyhemoglobin saturation. (b) PETO2 
(circles) and PETCO2 (triangles). (c, d) Systolic pulmonary artery pressure (SPAP) and cardiac output, respectively, measured by 
echocardiography. Symbols represent mean ± SEM. Participants subsequently in the iron group are shown with filled symbols, and those 
subsequently in the placebo group are shown with open symbols.

F I G U R E  4   Serum Iron indices measured before and after 
infusion of iron sucrose (200 mg, black bars) or saline placebo 
(100 mL 0.9% saline, open bars). (a) Transferrin saturation, 
calculated from serum iron and transferrin saturation. (b) Ferritin. 
Bars indicate mean ± SEM. Note that apparent “oversaturation” 
of transferrin (transferrin saturation >100%) is known to occur 
following iron sucrose administration, due to the transient excess of 
serum iron.
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during visit 3 (35.1 ± 2.4 mL/min/kg), compared with visit 
2 (35.4 ± 1.7 mL/min/kg). In contrast, in the iron group 
VO2max was slightly higher during visit 3 (37.2 ± 2.4 mL/
min/kg), compared with visit 2 (34.8 ± 1.7 mL/min/kg; 
p < 0.001). However, rmANOVA revealed no evidence of 
an overall difference between visits 2 and 3 (p = 0.285), 
and no evidence of an effect of iron infusion, compared 
with saline (p = 0.171 for interaction between visit and 
group).

There was also no evidence of an effect of sustained hy-
poxia on maximal work rate, heart rate and peak plasma 
lactate concentration on rmANOVA (p > 0.2 in each case), 
and no evidence of an effect of iron infusion on these pa-
rameters, compared with saline (p > 0.1 in each case, for 
interaction between visit and group).

Across both groups, there was evidence of a modest in-
crease in ventilation during exercise at visit 3, compared 
with visit 2 (p < 0.05 for visit on rmANOVA), and of an as-
sociated increase in oxyhemoglobin saturation (p < 0.01), 
but there was no interaction between visit and group, 
suggesting no significant effect of iron infusion on these 
changes (p > 0.2 in both cases).

4   |   DISCUSSION

There were two main findings of this study. First, a pe-
riod of sustained hypoxia produced a substantial eleva-
tion of pulmonary artery pressure in a group of healthy 
volunteers, but did not reduce maximal exercise capac-
ity breathing 12% oxygen, compared with acute hypoxia 
alone. Second, intravenous iron infusion markedly in-
hibited the rise in pulmonary artery pressure during sus-
tained hypoxia, but had only a modest effect on maximal 
exercise capacity during hypoxia, which was not signifi-
cantly different from saline infusion.

It is well established that maximal exercise capac-
ity falls when the inspired oxygen partial pressure is 
reduced, but the mechanism underlying this observa-
tion remains unclear. Much of the work in this area 
has been performed at high altitude, and it has been 
established in this setting that left ventricular func-
tion is preserved but left atrial pressure is reduced, 
compared with sea level exercise (Groves et  al.,  1987; 
Stembridge et al., 2015). This has led to the suggestion 
that right ventricular function may be a limiting factor 

F I G U R E  5   Exposure to 8 h of 
isocapnic hypoxia chamber (end-tidal 
partial pressure of oxygen (PETO2) 
55 mmHg, end tidal partial pressure 
of carbon dioxide (PETCO2) at each 
participant's normal value). (a) Peripheral 
oxyhemoglobin saturation. (b–d) Systolic 
pulmonary artery pressure, heart rate and 
stroke volume, respectively, estimated by 
echocardiography. (e, f) End tidal partial 
pressure of oxygen (PETO2) and carbon 
dioxide (PETCO2). Symbols represent 
mean ± SEM, with filled symbols 
representing those in the iron group and 
open symptoms representing those in the 
placebo group.
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at altitude, secondary to elevated pulmonary artery pres-
sure (Naeije, 2011; Naeije & Chesler, 2012). In support 
of this possibility, pulmonary vasodilators including 
phosphodiesterase (PDE) inhibitors and endothelin an-
tagonists have been shown to restore some of the fall in 
VO2max seen with acute hypoxia and at altitude (Faoro 
et  al.,  2009; Ghofrani et  al.,  2004; Naeije et  al.,  2010; 
Richalet et  al.,  2005). However, it is notable that not 
all studies have shown a beneficial effect of pulmonary 
vasodilatation on VO2max (Kressler et  al.,  2011; Toro-
Salinas et al., 2016), and in those that do, the effect size 
is modest (~30% improvement during acute hypoxia). In 
addition, in participants acclimatized to altitude, breath-
ing 100% oxygen can restore VO2max close to baseline 
values, without normalizing pulmonary artery pressure 
(Anholm & Foster, 2011; Pugh et al., 1964), suggesting 
an important contribution from factors other than pul-
monary hypertension.

In the current study, we used a novel approach to ad-
dress the question of whether pulmonary artery pressure 
limits exercise during hypoxia. Specifically, rather than 
attempting to enhance VO2max through pulmonary va-
sodilatation and reducing right ventricular afterload, we 
sought to increase the pulmonary vascular sensitivity to 

hypoxia, by exposing volunteers to a period of sustained 
(8 h) isocapnic hypoxia at sea level. This approach has 
a number of advantages. First, it is known to produce 
a rapid and robust upregulation of pulmonary vascu-
lar sensitivity to hypoxia (Dorrington et al., 1997; Smith 
et al., 2008; Talbot et al., 2005, 2008). Second, it avoids the 
complicating factors associated with a prolonged period 
of exposure to high altitude, which might have multiple 
competing effects on exercise capacity. Finally, we have 
an established antagonist of this stimulus, in the form of 
intravenous iron (Smith et al., 2008; Talbot et al., 2014).

We hypothesized that the increased pulmonary vas-
cular sensitivity induced by sustained hypoxia would 
be associated with greater right ventricular afterload 
during hypoxic exercise, and in turn with impaired left 
atrial filling and a reduction in maximal exercise capac-
ity. However, in opposition to this hypothesis, we found 
no evidence that the magnitude of the pulmonary vascu-
lar response to hypoxia at rest predicts exercise capacity 
breathing 12% oxygen. We also observed a substantial fall 
in VO2max when breathing 12% oxygen acutely, despite 
there being very little time for the development of elevated 
pulmonary artery pressure. Finally, and most strikingly, 
we saw no reduction in VO2max or maximal work rate 

F I G U R E  6   Exercise parameters before (visit 2) and after (visit 3) iron or saline infusion and 8 h of sustained isocapnic hypoxia. Open 
bars, saline group; filled bars, iron group. Parameters were measured during exercise testing breathing 12% oxygen. Maximal oxygen uptake 
(VO2max, a) and peak work rate (b) were determined using established methodology (Kuipers et al., 1985; Rossiter et al., 2006). Heart rate 
(c), ventilation (d), oxyhemoglobin saturation (e) and venous lactate (f) measurements were recorded at VO2max. In one participant at visit 2 
and one participant at visit 3, saturation could not be accurately recorded for technical reasons. In two participants at visit 3, heart rate could 
not be accurately recorded for technical reasons. Bars show mean ± SEM. *Indicates a significant effect of visit on ventilation (p < 0.05) and 
oxyhemoglobin saturation (p < 0.01), based on repeated measures ANOVA.
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following sustained hypoxia, despite a substantial eleva-
tion of pulmonary vascular sensitivity.

Although there was a short (<20 min) period of nor-
moxia between the end of the exposure to sustained hy-
poxia in the chamber and the start of hypoxic exercise, 
previous studies have shown that after 8 h of isocapnic 
hypoxia, the pulmonary artery pressure remains ele-
vated for at least 2 h, and abrupt re-exposure to hypoxia 
within this period leads to an exaggerated acute pulmo-
nary vascular response (Dorrington et al., 1997). At the 
onset of hypoxic exercise, participants were all exposed 
abruptly to significant alveolar hypoxia, and as exercise 
progressed, they would also have experienced progres-
sive mixed venous desaturation. We were not able to 
make measurements of SPAP during hypoxic exercise, 
but based on these considerations, we would expect the 
combination of alveolar and mixed venous hypoxia to 
provide a potent stimulus for hypoxic pulmonary vaso-
constriction (Marshall et al., 1994).

Overall, we conclude that in this laboratory study, there 
was no evidence that elevated pulmonary artery pressure 
led to a reduction in maximal hypoxic exercise capacity. 
This conclusion is at odds with some of the studies cited 
above, but in keeping with a number of previous studies 
(Anholm & Foster, 2011; Toro-Salinas et al., 2016). It also 
accords with the recent finding that although echocar-
diographic studies have suggested reduced right ventric-
ular function at high altitude (Holdsworth et  al.,  2020; 
Stembridge et  al.,  2014, 2015), right heart catheteriza-
tion and pressure-volume analysis has recently shown 
preserved right ventricular function during acute expo-
sure to 12% hypoxia in healthy volunteers, despite a sig-
nificant increase in pulmonary artery pressure (Forbes 
et al., 2023). The reasons for the discrepancy between our 
findings and those from previous vasodilator studies are 
unclear, but they could relate to the nonspecific nature of 
PDE inhibitors and endothelin antagonists, which are re-
ported to have effects on VO2max that are independent of 
right ventricular pressure, for example through increas-
ing oxygenation (Rubin & Naeije, 2004). In this context, 
one possible factor contributing to the lack of any obvi-
ous detrimental effect of sustained hypoxia on VO2max 
in the current study is the increase in ventilation and 
arterial oxyhemoglobin saturation seen during hypoxic 
exercise after sustained hypoxia, presumably reflecting 
an increased ventilatory sensitivity to hypoxia.

In relation to iron, it is now well established that in-
creased iron availability has an inhibitory effect on the 
pulmonary vascular response to hypoxia (Patrician 
et al., 2022; Smith et al., 2008, 2009; Willie et al., 2021). As 
in previous laboratory studies, the rise in SPAP over the 
first hour of exposure to sustained hypoxia in the current 
study was similar after iron and saline infusions (Smith 

et  al.,  2008; Talbot et  al.,  2014), but thereafter iron pre-
vented almost entirely the gradual rise in SPAP associated 
with more prolonged exposure to hypoxia. This lag in the 
effect of iron would be in keeping with a proposed inhib-
itory effect of iron on the HIF transcriptional pathway, 
which coordinates systemic and cellular responses to hy-
poxia, including the pulmonary vascular and ventilatory 
responses (Bishop & Ratcliffe, 2015; Formenti et al., 2010; 
Hodson et  al.,  2016; Lakhal-Littleton et  al.,  2019; Slingo 
et  al.,  2014; Smith et  al.,  2006). HIF levels are regulated 
by the prolyl hydroxylase domain (PHD) family of oxygen 
sensing enzymes (Ivan et al., 2001; Jaakkola et al., 2001), 
which are inhibited by low oxygen levels but are also regu-
lated by iron availability. In the presence of hypoxia or re-
stricted iron availability, PHD activity if inhibited, leading 
to HIF accumulation and activation of gene transcription. 
One known HIF-regulated gene product is the vasoactive 
peptide endothelin-1 (ET-1), which is known to be upregu-
lated during sustained hypoxia, and is established as a po-
tent pulmonary vasoconstrictor (Cargill et al., 1995; Goerre 
et al., 1995). It has recently been shown that ET-1 levels are 
lower during sustained hypoxia following an iron infusion, 
compared with saline (Lakhal-Littleton et al., 2019).

In the current study, despite a substantial inhibition 
of the pulmonary vascular response to hypoxia following 
iron infusion, our primary analysis found no evidence that 
inhibiting the pulmonary vascular response to hypoxia by 
iron had a beneficial effect on exercise capacity during hy-
poxia. This accords with the lack of an effect of sustained 
hypoxia on VO2max in the saline group, and with the 
conclusion that pulmonary artery pressure is unlikely to 
be limiting VO2max in acute hypoxia, at least in healthy 
volunteers. However, although there was no statistical dif-
ference between iron and saline infusion, it is of note that 
there was a small rise in VO2max at visit 3 in the iron group, 
compared with visit 2. For the reasons discussed above, this 
seems unlikely to be related directly to the effects of iron on 
SPAP. Other possible explanations include improvements 
in gas exchange, as has been suggested for other pulmo-
nary vasodilators (Faoro et al., 2009; Rubin & Naeije, 2004), 
or indeed for iron at very high altitude (Holdsworth 
et al., 2020), but the rise in oxyhemoglobin saturation was 
if anything slightly lower in the iron group, compared with 
saline. It has also been suggested in previous studies that 
iron may enhance exercise capacity through effects on skel-
etal muscle metabolism. In a group of healthy iron-replete 
volunteers undertaking submaximal exercise at sea level, 
for example, prior iron infusion increased lactate threshold 
(Frise et al.,  2022). Metabolic effects of iron may also be 
mediated through the HIF-pathway, which is known to reg-
ulate the balance between oxidative and glycolytic metab-
olism (Aragones et al., 2008; Formenti et al., 2010; Mason 
et al., 2004). Given the long-lasting effects of intravenous 
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supplementation on systemic iron availability, it is possi-
ble that the full extent of any such metabolic adaptation 
would not have been evident within the relatively short 
time frame of the current study.

This study has a number of other limitations. From a 
technical perspective, there was a small amount of miss-
ing data, due primary to technical difficulties relating to 
recording of oxyhemoglobin saturation and heart rate 
during exercise in a small number of individuals. This 
limits the confidence with which differences in these pa-
rameters between groups can be interpreted, but has no 
impact on the primary outcome/conclusions of the study. 
In addition, meaningful measurements of SPAP during 
maximal exercise were not possible during heavy exer-
cise, due to the inherent technical limitations of this tech-
nique. From a design perspective, our statistical power 
is limited by small numbers in the two groups (iron and 
saline), which in turn reflects the unpaired design of the 
study. This was felt to be necessary for two primary rea-
sons. First, the effect of iron in the pulmonary circulation 
is very long-lasting, with significant inhibition of the pul-
monary vascular response to hypoxia evident for at least 
43 days following a single infusion of iron ferric carboxy-
maltose (Bart et  al.,  2016). This effectively precludes a 
cross-over design. Second, there may be learning effects in 
participants not accustomed to maximal exercise testing 
(Astrand, 1976), which would complicate a paired design 
in which the saline infusion was always given prior to the 
iron infusion. A further limitation is the small number of 
female participants, which reduced our ability to identify 
any differences between male and female participants. No 
such differences were evident in the current study, but this 
should be explored in future studies, particularly given the 
potential impact of menstruation and pregnancy on iron 
status. Finally, a strength of our study was the relatively 
homogenous nature of our participant group, and the 
well-controlled laboratory setting. However, this limits our 
conclusions to healthy young volunteers exposed to acute 
hypoxia, and complicates direct comparison with results 
obtained after more prolonged exposure to hypoxia at alti-
tude. In addition, our conclusions may not apply to older 
participants, in whom both hypoxia and exercise may be 
associated with larger rises in pulmonary artery pressure 
(Balanos et al., 2015; Taylor & Johnson, 2010), or in pa-
tients with cardiorespiratory disease, in whom iron defi-
ciency is common (Nickol et al., 2015; Ruiter et al., 2011; 
van Veldhuisen et al., 2011). Indeed, intravenous iron has 
been shown to reduce pulmonary artery pressure during 
submaximal exercise in healthy older participants (Cheng 
et al., 2019), and to enhance submaximal exercise capacity 
in patients with COPD or heart failure (Anker et al., 2009; 
Santer et al., 2020). Further research on the effects of iron 
on exercise performance in these groups is warranted.
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